Rapid global urbanization and economic growth have significantly increased solid waste volumes, with hazardous waste posing substantial health and environmental risks. Co-processing strategies for industrial solid and hazardous waste as alternative fuels highlight the importance of integrated waste management for energy and material recovery. This study identifies and characterizes solid and hazardous industrial wastes with high calorific values from various industrial processes at Nirma Industries Limited.
View Article and Find Full Text PDFMolecularly woven materials with striking mechanical resilience, and 2D controlled topologies like textiles, fishing nets, and baskets are highly anticipated. Molecular weaving exclusively apprehended by the secondary interactions expanding to laterally grown 2D self-assemblies with retained crystalline arrangement is stimulating. The interlacing entails planar molecules screwed together to form 2D woven thin films.
View Article and Find Full Text PDFInspired by the uranyl-imidazole interactions via nitrogen's (N's) of histidine residues in single helical protein assemblies with open framework geometry that allows through migration/coordination of metal ions. Here, preliminary components of a stable hydrogen-bonded organic framework (HOF) are designed to mimic the stable single helical open framework with imidazole residues available for Uranium (U) binding. The imidazolate-HOF (HOF2-S) is synthesized with solvent-directed H-bonding in 1D array and tuned hydrophobic CH-π interactions leading to single helix pattern having enhanced hydrolytic stability.
View Article and Find Full Text PDFPolymeric membranes with precise molecular weight cutoffs are necessary for molecular separations. Here, we present a stepwise preparation of microporous polyaryl (PAR_TTSBI) freestanding nanofilm as well as the synthesis of bulk polymer (PAR_TTSBI) and fabrication of thin film composite (TFC) membrane, with crater-like surface morphology, then provide the details of separation study of PAR_TTSBI TFC membrane. For complete details on the use and execution of this protocol, please refer to Kaushik et al.
View Article and Find Full Text PDFHere, we present a protocol for uranium extraction from seawater (UES) and its characterization and computational-based structure analysis. We describe formulating batch adsorption experiments for adsorptive separation of uranium using thin film (TFCH) of Hydrogen-bonded Organic Framework (CSMCRIHOF-1). We then detail the recovery of uranium using eluent mixtures and the steps to regenerate TFCH for recyclability studies.
View Article and Find Full Text PDFHydrogen-bonded organic frameworks (HOFs) are assembled via non-covalent secondary interactions that are scintillating examples of porous crystalline materials. This protocol highlights the synthesis and characterization of U selective, permanently porous, hydrolytically stable single-component HOF-1. We describe the steps to synthesize hydrogen bonding motif and single crystals of HOF-1.
View Article and Find Full Text PDFPolymeric membranes with high permeance and selectivity performances are anticipated approach for water treatment. Separation membranes with moderate molecular weight cut-offs (MW in between 400 and 700 g mol) are desirable to separate multivalent ions and small molecules from a water stream. This requires polymeric membranes with controlled pore, pore size distribution, surface charge, and thin active layer to maximize membrane performance.
View Article and Find Full Text PDFNanostructured polymeric materials, functionalized with an appropriate receptor, have opened up newer possibilities for designing a reagent that shows analyte-specific recognition and efficient scavenging of an analyte that has either a detrimental influence on human physiology and environment or on its recovery for further value addition. Higher active surface area, morphological diversity, synthetic tunability for desired surface functionalization, and the ease of regeneration of a nanostructured material for further use have provided such materials with a distinct edge over conventional reagents. The use of a biodegradable polymeric backbone has an added significance owing to the recent concern over the impact of polymers on the environment.
View Article and Find Full Text PDFIn the present investigation, chitosan (CH) was supramolecularly cross-linked with thiobarbituric acid to form CT. CT was well characterized by UV, scanning electron microscopy-energy-dispersive X-ray analysis, Fourier transform infrared, NMR, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction analyses, and its adsorption potential for elemental mercury (Hg), inorganic mercury (Hg), and methyl mercury (CHHg) was investigated. Adsorption experiments were conducted to optimize the parameters for removal of the mercury species under study, and the data were analyzed using Langmuir, Freundlich, and Temkin adsorption isotherm models.
View Article and Find Full Text PDFIn situ bioreduction of soluble hexavalent uranium U(VI) to insoluble U(IV) (as UO ) has been proposed as a means of preventing U migration in the groundwater. This work focuses on the bioreduction of U(VI) and precipitation of U(IV). It uses anaerobic batch reactors with Desulfovibrio vulgaris, a well-known sulfate, iron, and U(VI) reducer, growing on lactate as the electron donor, in the absence of sulfate, and with a 30-mM bicarbonate buffering.
View Article and Find Full Text PDFA unique fluorescence resonance energy transfer (FRET) process is found to be operational in a unilamellar lipid self-assembly in the aqueous phase. A newly synthesized naphthyl based long chain lipid derivative [N-(naphthalene-1-ylmethyl)tetradecane-1-ammonium chloride, 14NA] forms various self-assembled architectures in the aqueous phase. Controlled changes in lipid concentration lead to a transition of the self-assemblies from micelles to vesicles to rods.
View Article and Find Full Text PDFReagents that allows detection and monitoring of crucial biomarkers with luminescence ON response have significance in clinical diagnostics. A new coumarin derivative is reported here, which could be used for specific and efficient chemodosimetric detection of cysteine, an important biomarker. The probe is successfully used for studying the biochemical transformation of N-acetylcysteine, a commonly prescribed Cys supplement drug to Cys by aminoacylase-1 (ACY-1), an important and endogenous mammalian enzyme.
View Article and Find Full Text PDFIn this study adsorbents based on palm shell powder as well as modified and activated palm shell powder were studied to analyze their behavior in sorbing U(6+) by both batch and fixed column modes. Seven different two-parameter isotherm models were applied to the experimental data to predict the sorption isotherms. The ΔG(0) values from Langmuir and thermodynamic calculations indicate physisorption as the major mechanism for adsorption of uranium.
View Article and Find Full Text PDFPalm shell based adsorbents prepared under five different thermochemical conditions have been shown to be quite effective for removal of chromium (III and VI) from aqueous solutions. X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR) have been used to determine information about the speciation and binding of chromium on the adsorbents under study. X-ray photoelectron spectroscopy (XPS) studies indicate that oxidation of lignin moieties takes place concurrently to Cr(VI) reduction and leads to the formation of hydroxyl and carboxyl functions.
View Article and Find Full Text PDF