Purpose: Second primary cancer (SPC) risks after breast cancer (BC) in pathogenic variant (PV) carriers are uncertain. We estimated relative and absolute risks using a novel linkage of genetic testing data to population-scale National Disease Registration Service and Hospital Episode Statistics electronic health records.
Methods: We followed 25,811 females and 480 males diagnosed with BC and tested for germline PVs in NHS Clinical Genetics centers in England between 1995 and 2019 until SPC diagnosis, death, migration, contralateral breast/ovarian surgery plus 1 year, or the 31st of December 2020.
Background: For female patients with Lynch syndrome (LS), endometrial cancer (EC) is often their first cancer diagnosis. A testing pathway of somatic tumour testing triage followed by germline mismatch repair (MMR) gene testing is an effective way of identifying the estimated 3% of EC caused by LS.
Methods: A retrospective national population-based observational study was conducted using comprehensive national data collections of functional, somatic and germline MMR tests available via the English National Cancer Registration Dataset.
It is believed that >95% of people with Lynch syndrome (LS) remain undiagnosed. Within the National Health Service (NHS) in England, formal guidelines issued in 2017 state that all colorectal cancers (CRC) should be tested for DNA Mismatch Repair deficiency (dMMR). We used a comprehensive population-level national dataset to analyse implementation of the agreed diagnostic pathway at a baseline point 2 years post-publication of official guidelines.
View Article and Find Full Text PDFHumans are constantly exposed to mixtures, such as tobacco smoke, exhaust from diesel, gasoline or new bio-fuels, containing several 1000 compounds, including many known human carcinogens. Covalent binding of reactive compounds or their metabolites to DNA and formation of stable adducts is believed to be the causal link between exposure and carcinogenesis. DNA and protein adducts are well established biomarkers for the internal dose of reactive compounds or their metabolites and are an integral part of science-based risk assessment.
View Article and Find Full Text PDFThe essential eukaryotic molecular chaperone Hsp90 operates with the help of different co-chaperones, which regulate its ATPase activity and serve as adaptors to recruit client proteins and other molecular chaperones, such as Hsp70, to the Hsp90 complex. Several Hsp90 and Hsp70 co-chaperones contain the tetratricopeptide repeat (TPR) domain, which interacts with the highly conserved EEVD motif at the C-terminal ends of Hsp90 and Hsp70. The acidic side chains in EEVD interact with a subset of basic residues in the TPR binding pocket called a 'carboxylate clamp'.
View Article and Find Full Text PDF