Publications by authors named "Shilpa Shastri"

O-Glycosylation is a ubiquitous eukaryotic post-translational modification, whereas early reports of S-linked glycopeptides have never been verified. Prokaryotes also glycosylate proteins, but there are no confirmed examples of sidechain glycosylation in ribosomal antimicrobial polypeptides collectively known as bacteriocins. Here we show that glycocin F, a bacteriocin secreted by Lactobacillus plantarum KW30, is modified by an N-acetylglucosamine β-O-linked to Ser18, and an N-acetylhexosamine S-linked to C-terminal Cys43.

View Article and Find Full Text PDF

Throughout the Plasmodium life cycle, malaria parasites repeatedly undergo rapid cellular growth and prolific divisions, necessitating intense membrane neogenesis and, in particular, the acquisition of high amounts of phospholipids. At the intraerythrocytic stage, glycerophospholipids are the main parasite membrane constituents, which mostly originate from the Plasmodium-encoded enzymatic machinery. Several proteins and entire pathways have been characterized and their features reported, thereby generating a global view of glycerophospholipid synthesis across Plasmodium spp.

View Article and Find Full Text PDF

Cytidine diphosphate diacylglycerol synthase (CDS) diverts phosphatidic acid towards the biosynthesis of CDP-DAG, an obligatory liponucleotide intermediate in anionic phospholipid biosynthesis. The 78kDa predicted Plasmodium falciparum CDS (PfCDS) is recovered as a 50 kDa conserved C-terminal cytidylyltransferase domain (C-PfCDS) and a 28kDa fragment that corresponds to the unusually long hydrophilic asparagine-rich N-terminal extension (N-PfCDS). Here, we show that the two fragments of PfCDS are the processed forms of the 78 kDa pro-form that is encoded from a single transcript with no alternate translation start site for C-PfCDS.

View Article and Find Full Text PDF