Publications by authors named "Shilpa R Shenoy"

Fusion-positive rhabdomyosarcoma (FP-RMS) is an aggressive pediatric sarcoma driven primarily by the PAX3-FOXO1 fusion oncogene, for which therapies targeting PAX3-FOXO1 are lacking. Here, we screen 62,643 compounds using an engineered cell line that monitors PAX3-FOXO1 transcriptional activity identifying a hitherto uncharacterized compound, P3FI-63. RNA-seq, ATAC-seq, and docking analyses implicate histone lysine demethylases (KDMs) as its targets.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped positive stranded RNA virus which has caused the recent deadly pandemic called COVID-19. The SARS-CoV-2 virion is coated with a heavily glycosylated Spike glycoprotein which is responsible for attachment and entry into target cells. One, as yet unexploited strategy for preventing SARS-CoV-2 infections, is the targeting of the glycans on Spike.

View Article and Find Full Text PDF

Rice-produced SD1 retains its physicochemical properties and provides efficient pre-exposure HIV-1 prophylaxis against infection in vitro. Scytovirin (SVN) is an HIV-neutralizing lectin that features two structural domains (SD1 and SD2) that bind to HIV-1 envelope glycoproteins. We expressed SD1 in rice seeds as a potential large-scale production platform and confirmed that rice-derived SD1 binds the HIV-1 envelope glycoprotein gp120 in vitro.

View Article and Find Full Text PDF

Identification of RNA-interacting pharmacophores could provide chemical probes and, potentially, small molecules for RNA-based therapeutics. Using a high-throughput differential scanning fluorimetry assay, we identified small-molecule natural products with the capacity to bind the discrete stem-looped structure of pre-miR-21. The most potent compound identified was a prodiginine-type compound, butylcycloheptyl prodiginine (bPGN), with the ability to inhibit Dicer-mediated processing of pre-miR-21 in vitro and in cells.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK) p38 is part of a broad and ubiquitously expressed family of MAPKs whose activity is responsible for mediating an intracellular response to extracellular stimuli through a phosphorylation cascade. p38 is central to this signaling node and is activated by upstream kinases while being responsible for activating downstream kinases and transcription factors via phosphorylation. Dysregulated p38 activity is associated with numerous autoimmune disorders and has been implicated in the progression of several types of cancer.

View Article and Find Full Text PDF

Background: The lectin griffithsin (GRFT) is a potent antiviral agent capable of prevention and treatment of infections caused by a number of enveloped viruses and is currently under development as an anti-HIV microbicide. In addition to its broad antiviral activity, GRFT is stable at high temperature and at a broad pH range, displays little toxicity and immunogenicity, and is amenable to large-scale manufacturing. Native GRFT is a domain-swapped homodimer that binds to viral envelope glycoproteins and has displayed mid-picomolar activity in cell-based anti-HIV assays.

View Article and Find Full Text PDF

Identifying small molecules that selectively bind to structured RNA motifs remains an important challenge in developing potent and specific therapeutics. Most strategies to find RNA-binding molecules have identified highly charged compounds or aminoglycosides that commonly have modest selectivity. Here we demonstrate a strategy to screen a large unbiased library of druglike small molecules in a microarray format against an RNA target.

View Article and Find Full Text PDF

Mutations were introduced to the domain-swapped homodimer of the antiviral lectin griffithsin (GRFT). Whereas several single and double mutants remained dimeric, insertion of either two or four amino acids at the dimerization interface resulted in a monomeric form of the protein (mGRFT). Monomeric character of the modified proteins was confirmed by sedimentation equilibrium ultracentrifugation and by their high resolution X-ray crystal structures, whereas their binding to carbohydrates was assessed by isothermal titration calorimetry.

View Article and Find Full Text PDF

Viruses of the family Coronaviridae have recently emerged through zoonotic transmission to become serious human pathogens. The pathogenic agent responsible for severe acute respiratory syndrome (SARS), the SARS coronavirus (SARS-CoV), is a member of this large family of positive-strand RNA viruses that cause a spectrum of disease in humans, other mammals, and birds. Since the publicized outbreaks of SARS in China and Canada in 2002-2003, significant efforts successfully identified the causative agent, host cell receptor(s), and many of the pathogenic mechanisms underlying SARS.

View Article and Find Full Text PDF

Polo-like kinase-1 (Plk1) has a pivotal role in cell proliferation and is considered a potential target for anticancer therapy. The noncatalytic polo-box domain (PBD) of Plk1 forms a phosphoepitope binding module for protein-protein interaction. Here, we report the identification of minimal phosphopeptides that specifically interact with the PBD of human PLK1, but not those of the closely related PLK2 and PLK3.

View Article and Find Full Text PDF

Crystal structures of complexes of an antiviral lectin griffithsin (GRFT) with glucose and N-acetylglucosamine were solved and refined at high resolution. In both complexes, all six monosaccharide-binding sites of GRFT were occupied and the mode of binding was similar to that of mannose. In our previous attempts to obtain a complex with N-acetylglucosamine by soaking, only a single site was occupied; thus, cocrystallization was clearly superior despite lower concentration of the ligand.

View Article and Find Full Text PDF

The mode of binding of oligosaccharides to griffithsin, an antiviral lectin from the red alga Griffithsia sp., was investigated by a combination of X-ray crystallography, isothermal titration calorimetry, and molecular modeling. The structures of complexes of griffithsin with 1-->6alpha-mannobiose and with maltose were solved and refined at the resolution of 2.

View Article and Find Full Text PDF

The HIV-1 nucleocapsid (NC) protein is a small, basic protein containing two retroviral zinc fingers. It is a highly active nucleic acid chaperone; because of this activity, it plays a crucial role in virus replication as a cofactor during reverse transcription, and is probably important in other steps of the replication cycle as well. We previously reported that NC binds with high-affinity to the repeating sequence d(TG)n.

View Article and Find Full Text PDF

Analytical methods optimized for micellar F5cys-MP-PEG(2000)-DPSE protein-lipopolymer conjugate are presented. The apparent micelle molecular weight, determined by size exclusion chromatography, ranged from 330 to 960 kDa. The F5cys antibody and conjugate melting points, determined by differential scanning calorimetry, were near 82 degrees C.

View Article and Find Full Text PDF

Binding of the protein cyanovirin-N to oligomannose-8 and oligomannose-9 of gp120 is crucially involved in its potent virucidal activity against the human immunodeficiency virus (HIV). The interaction between cyanovirin-N and these oligosaccharides has not been thoroughly characterized due to aggregation of the oligosaccharide-protein complexes. Here, cyanovirin-N's interaction with a nonamannoside, a structural analog of oligomannose-9, has been studied by nuclear magnetic resonance and isothermal titration calorimetry.

View Article and Find Full Text PDF

The development of anti-human immunodeficiency virus (HIV) microbicides for either topical or ex vivo use is of considerable interest, mainly due to the difficulties in creating a vaccine that would be active against multiple clades of HIV. Cyanovirin-N (CV-N), an 11-kDa protein from the cyanobacterium (blue-green algae) Nostoc ellipsosporum with potent virucidal activity, was identified in the search for such antiviral agents. The binding of CV-N to the heavily glycosylated HIV envelope protein gp120 is carbohydrate-dependent.

View Article and Find Full Text PDF