Phys Chem Chem Phys
August 2018
The mechanistic pathways for the [1,4] and [1,2] Wittig rearrangements of 2-silyl-6-aryl-5,6-dihydro-(2H)-pyrans have been studied at the M06-2X/6-31+G(d,p), 6-311++G(d,p) and cc-pVTZ level of theory. The crucial C-O bond cleavage step in the mechanism has been analysed initially, using two model reactions covering aliphatic as well as cyclic allylic ethers. The barriers for the one-step as well as two-step pathways have been calculated and the mechanisms for both the [1,4] and [1,2] Wittig rearrangement reactions are predicted to occur through a two-step mode.
View Article and Find Full Text PDFThe present work reports an inverse electron demand Diels-Alder (iEDDA)-type reaction to synthesize 1,3,5-trizines from acetophenones and amidines. The use of molecular iodine in a catalytic amount facilitates the functionalization of the sp C-H bond of acetophenones. This is a simple and efficient methodology for the synthesis of 1,3,5-triazines in good to excellent yields under transition-metal-free and peroxide-free conditions.
View Article and Find Full Text PDFDensity Functional Theory (DFT)-based Global reactivity descriptor calculations have emerged as powerful tools for studying the reactivity, selectivity, and stability of chemical and biological systems. A Python-based module, PyGlobal has been developed for systematically parsing a typical Gaussian outfile and extracting the relevant energies of the HOMO and LUMO. Corresponding global reactivity descriptors are further calculated and the data is saved into a spreadsheet compatible with applications like Microsoft Excel and LibreOffice.
View Article and Find Full Text PDF