Publications by authors named "Shilpa Bothra"

This manuscript presents a novel bioanalytical approach for the selective ratiometric fluorescent sensing of enzymatic activity of the alkaline phosphatase (ALP) in the biological samples. The probe was designed by conjugating the pyridoxal 5'-phosphate (PLP) over the surface of bovine serum albumin (BSA) stabilized CdS quantum dots (QDs) through the interaction of free amine present in BSA with the aldehyde group of PLP. The conjugation of PLP quenched the emission of QDs.

View Article and Find Full Text PDF

The present work reports the interaction of various vitamin B cofactors with the red emitting glutathione stabilized copper nanoclusters (GSH-CuNCs). Addition of pyridoxamine (PM) resulted a new turn-on band at 410nm due to the possible adsorption over the surface of GSH-CuNCs. The nano-assembly PM-GSH-CuNCs was applied for the selective detection of nitro-aromatic compounds.

View Article and Find Full Text PDF

This communication focusses on the synthesis of red fluorescent lysozyme cocooned gold nanoclusters (Lyso-AuNCs) that have been successfully applied for the selective and specific recognition of the vitamin B cofactor pyridoxal-5'-phosphate (PLP). The red fluorescence of Lyso-AuNCs showed remarkable color change to yellow upon conjugation with PLP due to the formation of a Schiff base between the free -NH present in the lysozyme and the -CHO group of PLP. The developed PLP conjugated Lyso-AuNCs (PLP_Lyso-AuNCs) was applied for the selective turn-on recognition of Zn ions in aqueous medium.

View Article and Find Full Text PDF

This communication reports the application of rhodamine 6G hydrazide (L) for the selective colorimetric and turn-on fluorescent sensing of hydrogen sulphate ions from aqueous medium. The ring opening of the colourless spirocyclic form of L was selectively triggered in the presence of HSO among the other tested anions (F, Cl, Br, I, AcO, HPO, NO, ClO, CN, HO, AsO and SO), which gives rise to a pink colour and strong fluorescence in the visible region. Sensor L showed a detection limit down to micromolar range without any interference from the other tested competitive anions.

View Article and Find Full Text PDF

One-pot approach was adopted for the synthesis of highly luminescent near-infrared (NIR)-emitting gold nanoclusters (AuNCs) using bovine serum albumin (BSA) as a protecting agent. The vitamin B cofactor pyridoxal was conjugated with the luminescent BSA-AuNCs through the free amines of BSA and then employed for the nanomolar detection of Hg in aqueous medium via selective fluorescence quenching of AuNCs. This nano-assembly was successfully applied for the real sample analysis of Hg in fish, tap water and river water.

View Article and Find Full Text PDF

Vitamin B6 cofactor pyridoxal 5'-phosphate (PLP) and PLP crowned gold nanoparticles (PLP-AuNPs) was applied for the optical chemosensing of metal ions in aqueous medium. PLP showed a visually detectable colour change from colourless to yellow and 'turn-off' fluorescence in the presence of Fe. The fluorescence intensity of PLP at 433nm was also blue-shifted and enhanced at 395nm upon addition of Al.

View Article and Find Full Text PDF

A simple colorimetric nanoprobe based on virgin silver nanoparticles (AgNPs) was developed for the selective detection of iodide and bromide ions via aggregation and anti-aggregation mechanism. With addition of I(-) ions, virgin AgNPs, in presence of Fe(3+), showed perceptible color change from yellow to colorless along with disappearance of surface plasmon resonance (SPR) band of AgNPs at 400 nm. But in presence of Cr(3+), AgNPs turned yellow upon addition of I(-)and Br(-) anions.

View Article and Find Full Text PDF

An imatinib intermediate, 6-methyl-N-[4-(pyridin-3-yl)pyrimidin-2-yl]benzene-1,3-diaminepyridopyrimidotoluidine (PPT-1), was developed for the colorimetric sensing of Cu(2+) ions in aqueous solution. With Cu(2+), the receptor PPT-1 showed a highly selective naked-eye detectable color change from colorless to red over the seventy other tested cations. The colorimetric sensing ability of PPT-1 was successfully utilized in the preparation of test strips and supported silica for the real samples analysis to detect Cu(2+) ions from 100% aqueous environment.

View Article and Find Full Text PDF