Publications by authors named "Shillcock J"

Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water-oil interface is presented using the morphological transitions that occur during the self-assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small-angle X-ray scattering (SAXS), rheometry, and microscopy techniques.

View Article and Find Full Text PDF

The crowded interior of a living cell makes performing experiments on simpler in vitro systems attractive. Although these reveal interesting phenomena, their biological relevance can be questionable. A topical example is the phase separation of intrinsically disordered proteins into biomolecular condensates, which is proposed to underlie the membrane-less compartmentalization of many cellular functions.

View Article and Find Full Text PDF

Biomolecular condensates play numerous roles in cells by selectively concentrating client proteins while excluding others. These functions are likely to be sensitive to the spatial organization of the scaffold proteins forming the condensate. We use coarse-grained molecular simulations to show that model intrinsically-disordered proteins phase separate into a heterogeneous, structured fluid characterized by a well-defined length scale.

View Article and Find Full Text PDF

Neuronal morphologies provide the foundation for the electrical behavior of neurons, the connectomes they form, and the dynamical properties of the brain. Comprehensive neuron models are essential for defining cell types, discerning their functional roles, and investigating brain-disease-related dendritic alterations. However, a lack of understanding of the principles underlying neuron morphologies has hindered attempts to computationally synthesize morphologies for decades.

View Article and Find Full Text PDF

Associative surfactants systems involving polar oils have recently been shown to stabilize immiscible liquids by forming nanostructures at the liquid interface and have been used to print soft materials. Although these associating surfactant systems show great promise for creating nanostructured soft materials, a fundamental understanding of the self-assembly process is still unknown. In this study, a ternary phase diagram for a system of cationic surfactant cetylpyridinium chloride monohydrate (CPCl), a polar oil (oleic acid), and water is established using experiment and simulation, to study the equilibrium phase behavior.

View Article and Find Full Text PDF

The pathological growth of amyloid fibrils in neurons underlies the progression of neurodegenerative diseases including Alzheimer's and Parkinson's disease. Fibrils form when soluble monomers oligomerise in the cytoplasm. Their subsequent growth occurs via nucleated polymerization mechanisms involving the free ends of the fibrils augmented by secondary nucleation of new oligomers at their surface.

View Article and Find Full Text PDF

Phospholipid membranes surround the cell and its internal organelles, and their multicomponent nature allows the formation of domains that are important in cellular signalling, the immune system, and bacterial infection. Cytoplasmic compartments are also created by the phase separation of intrinsically disordered proteins into biomolecular condensates. The ubiquity of lipid membranes and protein condensates raises the question of how three-dimensional droplets might interact with two-dimensional domains, and whether this coupling has physiological or pathological importance.

View Article and Find Full Text PDF

Many bacteria secrete toxic protein complexes that modify and disrupt essential processes in the infected cell that can lead to cell death. To conduct their action, these toxins often need to cross the cell membrane and reach a specific substrate inside the cell. The investigation of these protein complexes is essential not only for understanding their biological functions but also for the rational design of targeted drug delivery vehicles that must navigate across the cell membrane to deliver their therapeutic payload.

View Article and Find Full Text PDF

Phase separation of immiscible fluids is a common phenomenon in polymer chemistry, and is recognized as an important mechanism by which cells compartmentalize their biochemical reactions. Biomolecular condensates are condensed fluid droplets in cells that form by liquid-liquid phase separation of intrinsically-disordered proteins. They have a wide range of functions and are associated with chronic neurodegenerative diseases in which they become pathologically rigid.

View Article and Find Full Text PDF

Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance.

View Article and Find Full Text PDF

Many biological systems consist of branching structures that exhibit a wide variety of shapes. Our understanding of their systematic roles is hampered from the start by the lack of a fundamental means of standardizing the description of complex branching patterns, such as those of neuronal trees. To solve this problem, we have invented the Topological Morphology Descriptor (TMD), a method for encoding the spatial structure of any tree as a "barcode", a unique topological signature.

View Article and Find Full Text PDF
Article Synopsis
  • A new visualization pipeline has been developed for accurately rendering fluorescent neocortical neuronal models, aiding computational neurobiology by allowing scientists to visualize virtual experiments.
  • The pipeline utilizes a physically-based optical model to simulate light interactions with fluorescent materials, addressing limitations of existing workflows for handling complex fluorescent volumetric datasets.
  • It has been validated with experimental emission spectra from fluorescent dyes and is used to analyze synthetic neuronal models for enhanced understanding of the brain's structure and function.
View Article and Find Full Text PDF

The bacterial Shiga toxin interacts with its cellular receptor, the glycosphingolipid globotriaosylceramide (Gb3 or CD77), as a first step to entering target cells. Previous studies have shown that toxin molecules cluster on the plasma membrane, despite the apparent lack of direct interactions between them. The precise mechanism by which this clustering occurs remains poorly defined.

View Article and Find Full Text PDF

Large-scale brain initiatives such as the US BRAIN initiative and the European Human Brain Project aim to marshall a vast amount of data and tools for the purpose of furthering our understanding of brains. Fundamental to this goal is that neuronal morphologies must be seamlessly reconstructed and aggregated on scales up to the whole rodent brain. The experimental labor needed to manually produce this number of digital morphologies is prohibitively large.

View Article and Find Full Text PDF

Many problems in science and engineering require the ability to grow tubular or polymeric structures up to large volume fractions within a bounded region of three-dimensional space. Examples range from the construction of fibrous materials and biological cells such as neurons, to the creation of initial configurations for molecular simulations. A common feature of these problems is the need for the growing structures to wind throughout space without intersecting.

View Article and Find Full Text PDF

The bacterial Shiga toxin is composed of an enzymatically active A-subunit, and a receptor-binding homopentameric B-subunit (STxB) that mediates intracellular toxin trafficking. Upon STxB-mediated binding to the glycolipid globotriaosylceramide (Gb3) at the plasma membrane of target cells, Shiga toxin is internalized by clathrin-dependent and independent endocytosis. The formation of tubular membrane invaginations is an essential step in the clathrin-independent STxB uptake process.

View Article and Find Full Text PDF

Unlabelled: We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.

View Article and Find Full Text PDF

Globotriaosylceramide (Gb3) is a glycosphingolipid present in the plasma membrane that is the natural receptor of the bacterial Shiga toxin. The unsaturation level of Gb3 acyl chains has a drastic impact on lipid bilayer properties and phase behaviour, and on many Gb3-related cellular processes. For example: the Shiga toxin B subunit forms tubular invaginations in the presence of Gb3 with an unsaturated acyl chain (U-Gb3), while in the presence of Gb3 with a saturated acyl chain (S-Gb3) such invagination does not occur.

View Article and Find Full Text PDF

Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and from, fusing with, and budding from, other membranes. A feature of vesicles that is crucial for this transport is their ability to fuse to target membranes and release their contents to the distal side.

View Article and Find Full Text PDF

Amphiphilic vesicles are ubiquitous in living cells and industrially interesting as drug delivery vehicles. Vesicle self-assembly proceeds rapidly from nanometer to micrometer length scales and is too fast to image experimentally but too slow for molecular dynamics simulations. Here, we use parallel dissipative particle dynamics (DPD) to follow spontaneous vesicle self-assembly for up to 445 μs with near-molecular resolution.

View Article and Find Full Text PDF

Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (P(i)). Therefore, each protomer within an actin filament can attain three different nucleotide states corresponding to bound ATP, ADP/P(i), and ADP. These protomer states form spatial patterns on the growing (or shrinking) filaments.

View Article and Find Full Text PDF

The dynamic compartmentalization of eukaryotic cells is a fascinating phenomenon that is not yet understood. A prominent example of this challenge is the Golgi apparatus, the central hub for protein sorting and lipid metabolism in the secretory pathway. Despite major advances in elucidating its molecular biology, the fundamental question of how the morphogenesis of this organelle is organized on a system level has remained elusive.

View Article and Find Full Text PDF

Brownian dynamics simulations are used to study the dynamical process of self-assembly of actin monomers into long filaments containing up to 1000 actin protomers. In order to overcome the large separation of time scales between the diffusive motion of the free monomers and the relatively slow attachment and detachment processes at the two ends of the filaments, we introduce a novel rescaling procedure by which we speed all dynamical processes related to actin polymerization and depolymerization up by the same factor. In general, the actin protomers within a filament can attain three different states corresponding to a bound adenosine triphosphate (ATP), adenosine diphosphate with inorganic phosphate (ADP/P), and ADP molecule.

View Article and Find Full Text PDF