Publications by authors named "Shiling Zheng"

Aerobic methanotrophs play a crucial role in controlling methane emission in wastewater treatment. However, the high nitrite produced during ammonium oxidation, nitrate assimilation, and denitrification hinders methane oxidation and nitrogen removal. In this study, Methylomonas sp.

View Article and Find Full Text PDF

Avian leukosis virus (ALV) is an enveloped retrovirus with a single-stranded RNA genome, belonging to the genus Alpharetrovirus within the family Retroviridae. The disease (Avian leukosis, AL) caused by ALV is mainly characterized by tumor development and immunosuppression in chickens, which increases susceptibility to other pathogens and leads to significant economic losses in the Chinese poultry industry. The government and poultry industry have made lots of efforts to eradicate ALV, but the threat of which remains not vanished.

View Article and Find Full Text PDF

Dissimilatory iron-reducing bacteria (DIRB) oxidize organic matter or hydrogen and reduce ferric iron to form Fe(II)-bearing minerals, such as magnetite and siderite. However, compared with magnetite, which was extensively studied, the mineralization process and mechanisms of siderite remain unclear. Here, with the combination of advanced electron microscopy and synchrotron-based scanning transmission X-ray microscopy (STXM) approaches, we studied in detail the morphological, structural, and chemical features of biogenic siderite via a growth experiment with MR-4.

View Article and Find Full Text PDF

The ubiquitin-binding enzyme E2J1 is located on the endoplasmic reticulum membrane. It plays a role in transport throughout the process of ubiquitination. In mammals, UBE2J1 can promote RNA virus replication.

View Article and Find Full Text PDF

Electroactive bacteria (EAB) and metal oxides are capable of synergistically removing chloramphenicol (CAP). However, the effects of redox-active metal-organic frameworks (MOFs) on CAP degradation with EAB are not yet known. This study investigated the synergism of iron-based MOFs (Fe-MIL-101) and Shewanella oneidensis MR-1 on CAP degradation.

View Article and Find Full Text PDF

Methanobacterium electrotrophus strain YSL was isolated from enriched microbial aggregates from a coastal riverine sediment sample from Shandong Province, China. The genome of YSL was sequenced with the PacBio Sequel platform and contained three plasmids in addition to the chromosome. A total of 2,521 protein-coding genes and 58 RNA genes were predicted.

View Article and Find Full Text PDF
Article Synopsis
  • The archaeal phylum Woesearchaeota, part of the DPANN superphylum, consists of diverse microorganisms whose biology remains largely unstudied due to a scarcity of cultured isolates.
  • Current research involves analyzing 16S rRNA gene sequences and metagenome-assembled genomes to explore the global distribution, ecological preferences, and possible metabolic abilities of these organisms.
  • Phylogenomic findings classify Woesearchaeota into ten subgroups, with most expected to lead a symbiotic lifestyle, while subgroup J may live independently, and their genomes suggest potential metabolic roles as anaerobic fermentative heterotrophs.
View Article and Find Full Text PDF

Geobacter, as a typical electroactive microorganism, is the "engine" of interspecies electron transfer (IET) between microorganisms. However, it does not have a dominant position in all natural environments. It is not known what performs a similar function as Geobacter in coastal zones.

View Article and Find Full Text PDF

Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the , leading to the assumption that an abundance of other types of methanogens, such as species, indicates a lack of DIET. We report here on a strain of , designated strain YSL, that grows via DIET in defined cocultures with .

View Article and Find Full Text PDF

Methanogens are the major contributors of greenhouse gas methane and play significant roles in the degradation and transformation of organic matter. These organisms are particularly abundant in Swan Lake, which is a shallow lagoon located in Rongcheng Bay, Yellow Sea, northern China, where eutrophication from overfertilization commonly results in anoxic environments. High organic phosphorus content is a key component of the total phosphorus in Swan Lake and is possibly a key factor affecting the eutrophication and carbon and nitrogen cycling in Swan Lake.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have been reported to promote symbiotic metabolism in bacteria by accelerating interspecies electron transfer. However, this phenomenon has not been investigated or proven in a cocultures system. In this study, multi-walled CNTs (MWCNTs) were added into Geobacter cocultures systems with the ability of direct interspecies electron transfer (DIET).

View Article and Find Full Text PDF

Geobacter metallireducens GS15, a model of dissimilatory iron-reducing bacteria, is the key regulator in biogeochemical iron cycling. How the emerging contaminant microplastics involved in the iron cycling are driven by microbes on the microscale remains unknown. Hence, the influences of two typical microplastics, polybutylene terephthalate-hexane acid (PBAT) and polyvinyl chloride (PVC), were explored on the activity of G.

View Article and Find Full Text PDF

Methanogens are an important biogenic source of methane, especially in estuarine waters across a river-to-sea gradient. However, the diversity and trophic strategy of methanogens in this gradient are not clear. In this study, the diversity and trophic strategy of methanogens in sediments across the Yellow River (YR) to the Bohai Sea (BS) gradient were investigated by high-throughput sequencing based on the 16S rRNA gene.

View Article and Find Full Text PDF

Antimony (Sb) pollution is a worldwide problem. In some anoxic sites, such as Sb mine drainage and groundwater sediment, the Sb concentration is extremely elevated. Therefore, effective Sb remediation strategies are urgently needed.

View Article and Find Full Text PDF

Conductive materials/minerals can promote direct interspecies electron transfer (DIET) between syntrophic bacteria and methanogens in defined co-culture systems and artificial anaerobic digesters; however, little is known about the stimulation strategy of carbon material on methane production in natural environments. Herein, the effect of carbon cloth, as a representative of conductive carbon materials, on methane production with incubated wetland soil was investigated. Carbon cloth significantly promoted methanogenesis.

View Article and Find Full Text PDF

Objective: To evaluate the semen quality of the HIV/AIDS male patients after treated by the highly active antiretroviral therapy (HAART) and their potential of transmitting HIV/AIDS and provide some evidence for this cohort of males who wish for parenthood.

Methods: We collected semen samples from 20 HIV/AIDS male patients who had been treated by HAART for over 6 months and wished for parenthood. We examined sperm concentration, viability and total motility and the percentage of morphologically normal sperm (MNS) using the computer-assisted semen analysis system, measured the HIV-1 RNA loads in the semen by the Cobas Amplicor Monitor test, and counted CD4+ T cells in the peripheral blood by flow cytometry.

View Article and Find Full Text PDF

Biochar has been reported to facilitate direct interspecies electron transfer (DIET) in co-cultures between Geobacter metallireducens and Geobacter sulfurreducens, a model defined co-culture system. In this study, the biochar derived from the activated sludge with different pyrolysis temperature was added to the co-cultures, the ethanol metabolism rates (Re) and succinate production rates (Rs) of co-culture with biochar-800 were 1.05- and 1.

View Article and Find Full Text PDF

Background: Magnetite-mediated direct interspecies electron transfer (DIET) between and species is increasingly being invoked to explain magnetite stimulation of methane production in anaerobic soils and sediments. Although magnetite-mediated DIET has been documented in defined co-cultures reducing fumarate or nitrate as the electron acceptor, the effects of magnetite have only been inferred in methanogenic systems.

Methods: Concentrations of methane and organic acid were analysed with a gas chromatograph and high-performance liquid chromatography, respectively.

View Article and Find Full Text PDF

Both activated carbon and magnetite have been reported to promote the syntrophic growth of Geobacter metallireducens and Geobacter sulfurreducens co-cultures, the first model to show direct interspecies electron transfer (DIET); however, differential transcriptomics of the promotion on co-cultures with these two conductive materials are unknown. Here, the comparative transcriptomic analysis of G. metallireducens and G.

View Article and Find Full Text PDF

Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor.

View Article and Find Full Text PDF

Iron (III)-reducing bacteria (IRB) play significant roles in the degradation of naturally occurring organic matter and in the cycling of heavy metals in marine and freshwater sediments. Our previous study has demonstrated the co-occurrence of Geobacteraceae and Methanosarcinamazei as aggregates in the iron (III)-reducing enrichments from a coastal gold mining site on the Jiehe River. The IRB community in the enriched sediments was dominated by members of Comamonadacea, Clostridiaceae, Bacillaceae, Bacteroidaceae, and Geobacteraceae.

View Article and Find Full Text PDF

Wetland-estuarine-marine environments are typical oxic/anoxic transition zones and have complex water flow-paths within the zone of mixing where freshwater interacts with ocean water. Little is known about the impact of this interaction on bacterial community structures or the relationship between bacterial community and geochemical factors in such transitional mixing environments. Hence, we investigated the distribution patterns and diversity in bacterial communities in the Yellow River estuary-coastal wetland-Bohai Sea transition zone by analyzing 39 samples from 13 ordered sites.

View Article and Find Full Text PDF

Methanosaeta harundinacea and Methanosarcina barkeri, known as classic acetoclastic methanogens, are capable of directly accepting electrons from Geobacter metallireducens for the reduction of carbon dioxide to methane, having been revealed as direct interspecies electron transfer (DIET) in the laboratory co-cultures. However, whether their co-occurrences are ubiquitous in the iron (III)-reducing environments and the other species of acetoclastic methanogens such as Methanosarcina mazei are capable of DIET are still unknown. Instead of initiating the co-cultures with pure cultures, two-step cultivation was employed to selectively enrich iron (III)-reducing microorganisms in a coastal gold mining river, Jiehe River, with rich iron content in the sediments.

View Article and Find Full Text PDF

The virus-derived small interfering RNAs (vsiRNAs) of Chinese wheat mosaic virus (CWMV), a member of the genus Furovirus, were characterised from wheat plants by deep sequencing. CWMV vsiRNAs of 21-22 nt in length predominated, suggesting that there might be a conserved mechanism of DCL2 and DCL4 involvement in the biogenesis of vsiRNAs, as well as a common RNA silencing pathway in CWMV-infected wheat plants. The 5'-terminal base of vsiRNAs was biased towards A/U, suggesting that CWMV vsiRNAs might be loaded into diverse AGO-containing RISCs to disturb the gene expression of host plants.

View Article and Find Full Text PDF

The 37K protein of Chinese wheat mosaic virus (CWMV) belongs to the 30K superfamily of plant virus movement proteins. CWMV 37K trans-complemented the cell-to-cell spread of a movement-defective Potato virus X. CWMV 37K fused to enhanced green fluorescent protein localized to plasmodesmata and formed endoplasmic reticulum (ER)-derived vesicular and large aggregate structures.

View Article and Find Full Text PDF