Publications by authors named "Shilah A Bonnett"

Article Synopsis
  • - This study introduces a new spatial proteogenomic (SPG) assay on the GeoMx Digital Spatial Profiler platform, which allows for high-plex analysis of proteins (>100) and RNA (>18,000) from a single tissue sample.
  • - The SPG assay shows high accuracy and reproducibility in analyzing human and mouse tissues, effectively distinguishing RNA and protein expressions in specific cell subpopulations within colorectal and lung cancers.
  • - Examination of glioblastoma multiforme (GBM) using the SPG assay reveals distinct differences in protein and RNA profiles between giant cell GBM and typical GBM, emphasizing its potential for detailed spatial analysis of complex tumors.
View Article and Find Full Text PDF
Article Synopsis
  • There's an urgent need for new oral drugs to combat multi-drug-resistant tuberculosis (TB), particularly those targeting MmpL3.
  • Several spirocycle compounds were identified from phenotypic screening, showing potential effectiveness but also presenting cytotoxic risks due to their lipophilic nature and basic amine groups.
  • Optimizations led to the discovery of a new zwitterion series with improved properties, but unfortunately, one identified compound lacked efficacy in acute TB infection models despite demonstrating bactericidal activity under certain conditions.
View Article and Find Full Text PDF

The enhanced intracellular survival (Eis) protein of () is a versatile acetyltransferase that multiacetylates aminoglycoside antibiotics abolishing their binding to the bacterial ribosome. When overexpressed as a result of promoter mutations, Eis causes drug resistance. In an attempt to overcome the Eis-mediated kanamycin resistance of , we designed and optimized structurally unique thieno[2,3-]pyrimidine Eis inhibitors toward effective kanamycin adjuvant combination therapy.

View Article and Find Full Text PDF

There is an urgent need for the development of shorter, simpler and more tolerable drugs to treat antibiotic tolerant populations of Mycobacterium tuberculosis. We previously identified a series of hydrazones active against M. tuberculosis.

View Article and Find Full Text PDF

The diaminoquinazoline series has good potency against Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type.

View Article and Find Full Text PDF

Guanosine 5'-triphosphate (GTP) cyclohydrolase-I (GCYH-I) catalyzes the first step in folic acid biosynthesis in bacteria and plants, biopterin biosynthesis in mammals, and the biosynthesis of 7-deazaguanosine-modified tRNA nucleosides in bacteria and archaea. The type IB GCYH (GCYH-IB) is a prokaryotic-specific enzyme found in many pathogens. GCYH-IB is structurally distinct from the canonical type IA GCYH involved in biopterin biosynthesis in humans and animals, and thus is of interest as a potential antibacterial drug target.

View Article and Find Full Text PDF

The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE).

View Article and Find Full Text PDF

The bacterial pathway of olefin biosynthesis starts with OleA catalyzed "head-to-head" condensation of two CoA-activated long-chain fatty acids to generate (R)-2-alkyl-3-ketoalkanoic acids. A subsequent OleD-catalyzed reduction generates (2R,3S)-2-alkyl-3-hydroxyalkanoic acids. We now show that the final step in the pathway is an OleC-catalyzed ATP-dependent decarboxylative dehydration to form the corresponding Z olefins.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how the Plm1 module of phoslactomycin polyketide synthase generates an activated cis-3-cyclohexylpropenoic acid through the ketoreduction of an L-3-hydroxyacyl-intermediate by an A-type ketoreductase (KR).
  • - It is demonstrated that the KR domain, known as PlmKR1, successfully catalyzes the formation of the L-3-hydroxyacyl product, and its crystal structure shows a well-ordered active site with a distinctive Trp residue typical of A-type KRs.
  • - A structural comparison reveals that PlmKR1's active site is ready for catalysis, unlike
View Article and Find Full Text PDF

The DEBS1-TE fusion protein is comprised of the loading module, the first two extension modules, and the terminal TE domain of the Saccharopolyspora erythraea 6-deoxyerythronolide B synthase. DEBS1-TE produces triketide lactones that differ on the basis of the starter unit selected by the loading module. Typical fermentations with plasmid-based expression of DEBS1-TE produce a 6:1 ratio of propionate to isobutyrate-derived triketide lactones.

View Article and Find Full Text PDF

OleD is shown to play a key reductive role in the generation of alkenes (olefins) from acyl thioesters in Stenotrophomonas maltophilia. The gene coding for OleD clusters with three other genes, oleABC, and all appear to be transcribed in the same direction as an operon in various olefin producing bacteria. In this study, a series of substrates varying in chain length and stereochemistry were synthesized and used to elucidate the functional role and substrate specificity of OleD.

View Article and Find Full Text PDF

Polyketide natural products generated by type I modular polyketide synthases (PKSs) are vital components in our drug repertoire. To reprogram these biosynthetic assembly lines, we must first understand the steps that occur within the modular "black boxes." Herein, key steps of acyl-CoA extender unit selection are explored by in vitro biochemical analysis of the PikAIV PKS model system.

View Article and Find Full Text PDF

GTP cyclohydrolase I (GCYH-I) is an essential Zn(2+)-dependent enzyme that catalyzes the first step of the de novo folate biosynthetic pathway in bacteria and plants, the 7-deazapurine biosynthetic pathway in Bacteria and Archaea, and the biopterin pathway in mammals. We recently reported the discovery of a new prokaryotic-specific GCYH-I (GCYH-IB) that displays no sequence identity to the canonical enzyme and is present in approximately 25% of bacteria, the majority of which lack the canonical GCYH-I (renamed GCYH-IA). Genomic and genetic analyses indicate that in those organisms possessing both enzymes, e.

View Article and Find Full Text PDF