IEEE/ACM Trans Comput Biol Bioinform
October 2024
Discovering the novel associations of biomedical entities is of great significance and can facilitate not only the identification of network biomarkers of disease but also the search for putative drug targets.Graph representation learning (GRL) has incredible potential to efficiently predict the interactions from biomedical networks by modeling the robust representation for each node.> However, the current GRL-based methods learn the representation of nodes by aggregating the features of their neighbors with equal weights.
View Article and Find Full Text PDFExisting human parsing frameworks commonly employ joint learning of semantic edge detection and human parsing to facilitate the localization around boundary regions. Nevertheless, the parsing prediction within the interior of the part contour may still exhibit inconsistencies due to the inherent ambiguity of fine-grained semantics. In contrast, binary edge detection does not suffer from such fine-grained semantic ambiguity, leading to a typical failure case where misclassification occurs inner the part contour while the semantic edge is accurately detected.
View Article and Find Full Text PDFIEEE Trans Image Process
February 2024
Composed query image retrieval task aims to retrieve the target image in the database by a query that composes two different modalities: a reference image and a sentence declaring that some details of the reference image need to be modified and replaced by new elements. Tackling this task needs to learn a multimodal embedding space, which can make semantically similar targets and queries close but dissimilar targets and queries as far away as possible. Most of the existing methods start from the perspective of model structure and design some clever interactive modules to promote the better fusion and embedding of different modalities.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
July 2023
This article explores how to harvest precise object segmentation masks while minimizing the human interaction cost. To achieve this, we propose a simple yet effective interaction scheme, named Inside-Outside Guidance (IOG). Concretely, we leverage an inside point that is clicked near the object center and two outside points at the symmetrical corner locations (top-left and bottom-right or top-right and bottom-left) of an almost-tight bounding box that encloses the target object.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2022
Composed image retrieval aims at retrieving the desired images, given a reference image and a text piece. To handle this task, two important subprocesses should be modeled reasonably. One is to erase irrelated details of the reference image against the text piece, and the other is to replenish the desired details in the image against the text piece.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2021
Garment transfer aims to transfer the desired garment from a model image with the desired clothing to a target person, which has attracted a great deal of attention due to its wider potential applications. However, considering the model and target persons are often given at different views, body shapes and poses, realistic garment transfer is facing the following challenges that have not been well addressed: 1) deforming the garment; 2) inferring unobserved appearance; 3) preserving fine texture details. To tackle these challenges, we propose a novel SPatial-Aware Texture Transformer (SPATT) model.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
October 2020
Background: Syndrome differentiation aims at dividing patients into several types according to their clinical symptoms and signs, which is essential for traditional Chinese medicine (TCM). Several previous works were devoted to employing the classical algorithms to classify the syndrome and achieved delightful results. However, the presence of ambiguous symptoms substantially disturbed the performance of syndrome differentiation, This disturbance is always due to the diversity and complexity of the patients' symptoms.
View Article and Find Full Text PDFConvolutional neural network (CNN) is the primary technique that has greatly promoted the development of computer vision technologies. However, there is little research on how to allocate parameters in different convolution layers when designing CNNs. We research mainly on revealing the relationship between CNN parameter distribution, i.
View Article and Find Full Text PDFIEEE Trans Image Process
May 2019
In content-based image retrieval (CBIR), one of the most challenging and ambiguous tasks are to correctly understand the human query intention and measure its semantic relevance with images in the database. Due to the impressive capability of visual saliency in predicting human visual attention that is closely related to the query intention, this paper attempts to explicitly discover the essential effect of visual saliency in CBIR via qualitative and quantitative experiments. Toward this end, we first generate the fixation density maps of images from a widely used CBIR dataset by using an eye-tracking apparatus.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2019
This paper presents an intelligent system named Magic-wall, which enables visualization of the effect of room decoration automatically. Concretely, given an image of the indoor scene and a preferred color, the Magic-wall can automatically locate the wall regions in the image and smoothly replace the existing wall with the required one. The key idea of the proposed Magic-wall is to leverage visual semantics to guide the entire process of color substitution, including wall segmentation and replacement.
View Article and Find Full Text PDFIEEE Trans Image Process
August 2019
To efficiently browse long surveillance videos, the video synopsis technique is often used to rearrange tubes (i.e., tracks of moving objects) along the temporal axis to form a much shorter video.
View Article and Find Full Text PDFRecently, convolutional neural network (CNN) visual features have demonstrated their powerful ability as a universal representation for various recognition tasks. In this paper, cross-modal retrieval with CNN visual features is implemented with several classic methods. Specifically, off-the-shelf CNN visual features are extracted from the CNN model, which is pretrained on ImageNet with more than one million images from 1000 object categories, as a generic image representation to tackle cross-modal retrieval.
View Article and Find Full Text PDFNonnegative matrix factorization (NMF) is a useful technique to explore a parts-based representation by decomposing the original data matrix into a few parts-based basis vectors and encodings with nonnegative constraints. It has been widely used in image processing and pattern recognition tasks due to its psychological and physiological interpretation of natural data whose representation may be parts-based in human brain. However, the nonnegative constraint for matrix factorization is generally not sufficient to produce representations that are robust to local transformations.
View Article and Find Full Text PDFIndependent component analysis with soft reconstruction cost (RICA) has been recently proposed to linearly learn sparse representation with an overcomplete basis, and this technique exhibits promising performance even on unwhitened data. However, linear RICA may not be effective for the majority of real-world data because nonlinearly separable data structure pervasively exists in original data space. Meanwhile, RICA is essentially an unsupervised method and does not employ class information.
View Article and Find Full Text PDFThe bag-of-words (BoW) model has been known as an effective method for large-scale image search and indexing. Recent work shows that the performance of the model can be further improved by using the embedding method. While different variants of the BoW model and embedding method have been developed, less effort has been made to discover their underlying working mechanism.
View Article and Find Full Text PDF