Publications by authors named "Shikui Tu"

Parental stress can be encoded into altered epigenetic information to influence their offspring. Concurrently, it is vital for the preservation of a parent's epigenetic information, despite environmental challenges, to ensure accurate inheritance by the next generation. Nevertheless, the complexities of this process and the specific molecular mechanisms involved are not yet fully understood.

View Article and Find Full Text PDF

Diffusion models have demonstrated their ability to generate diverse and high-quality images, sparking considerable interest in their potential for real image editing applications. However, existing diffusion-based approaches for local image editing often suffer from undesired artifacts due to the latent-level blending of the noised target images and diffusion latent variables, which lack the necessary semantics for maintaining image consistency. To address these issues, we propose PFB-Diff, a Progressive Feature Blending method for Diffusion-based image editing.

View Article and Find Full Text PDF

Generating high-quality and drug-like molecules from scratch within the expansive chemical space presents a significant challenge in the field of drug discovery. In prior research, value-based reinforcement learning algorithms have been employed to generate molecules with multiple desired properties iteratively. The immediate reward was defined as the evaluation of intermediate-state molecules at each step, and the learning objective would be maximizing the expected cumulative evaluation scores for all molecules along the generative path.

View Article and Find Full Text PDF

The PIWI-interacting RNA (piRNA) pathway is an adaptive defense system wherein piRNAs guide PIWI family Argonaute proteins to recognize and silence ever-evolving selfish genetic elements and ensure genome integrity. Driven by this intensive host-pathogen arms race, the piRNA pathway and its targeted transposons have coevolved rapidly in a species-specific manner, but how the piRNA pathway adapts specifically to target silencing in mammals remains elusive. Here, we show that mouse MILI and human HILI piRNA-induced silencing complexes (piRISCs) bind and cleave targets more efficiently than their invertebrate counterparts from the sponge Ephydatia fluviatilis.

View Article and Find Full Text PDF

Retrosynthetic planning, which aims to identify synthetic pathways for target molecules from starting materials, is a fundamental problem in synthetic chemistry. Computer-aided retrosynthesis has made significant progress, in which heuristic search algorithms, including Monte Carlo Tree Search (MCTS) and A search, have played a crucial role. However, unreliable guiding heuristics often cause search failure due to insufficient exploration.

View Article and Find Full Text PDF

De novo molecular generation is a promising approach to drug discovery, building novel molecules from the scratch that can bind the target proteins specifically. With the increasing availability of machine learning algorithms and computational power, artificial intelligence (AI) has emerged as a valuable tool for this purpose. Here, we have developed a database of 3D ligands that collects six AI models for de novo molecular generation based on target proteins, including 20 disease-associated targets.

View Article and Find Full Text PDF

Designing 3D molecules with high binding affinity for specific protein targets is crucial in drug design. One challenge is that the atomic interaction between molecules and proteins in 3D space has to be taken into account. However, the existing target-aware methods solely model the joint distribution between the molecules and proteins, disregarding the binding affinities between them, which leads to limited performance.

View Article and Find Full Text PDF

Encoding sketches as Gaussian mixture model (GMM)-distributed latent codes is an effective way to control sketch synthesis. Each Gaussian component represents a specific sketch pattern, and a code randomly sampled from the Gaussian can be decoded to synthesize a sketch with the target pattern. However, existing methods treat the Gaussians as individual clusters, which neglects the relationships between them.

View Article and Find Full Text PDF

It is critical to accurately predict the rupture risk of an intracranial aneurysm (IA) for timely and appropriate treatment because the fatality rate after rupture is . Existing methods relying on morphological features (e.g.

View Article and Find Full Text PDF

Protein binding site prediction is an important prerequisite task of drug discovery and design. While binding sites are very small, irregular and varied in shape, making the prediction very challenging. Standard 3D U-Net has been adopted to predict binding sites but got stuck with unsatisfactory prediction results, incomplete, out-of-bounds, or even failed.

View Article and Find Full Text PDF

Accurate prediction of synergistic effects of drug combinations can reduce the experimental costs for drug development and facilitate the discovery of novel efficacious combination therapies for clinical studies. The drug combinations with high synergy scores are regarded as synergistic ones, while those with moderate or low synergy scores are additive or antagonistic ones. The existing methods usually exploit the synergy data from the aspect of synergistic drug combinations, paying little attention to the additive or antagonistic ones.

View Article and Find Full Text PDF

Traditional drug discovery is very laborious, expensive, and time-consuming, due to the huge combinatorial complexity of the discrete molecular search space. Researchers have turned to machine learning methods for help to tackle this difficult problem. However, most existing methods are either virtual screening on the available database of compounds by protein-ligand affinity prediction, or unconditional molecular generation, which does not take into account the information of the protein target.

View Article and Find Full Text PDF

Semantic face editing has achieved substantial progress in recent years. However, existing face editing methods, which often encode the entire image into a single code, still have difficulty in enabling flexible editing while keeping high-fidelity reconstruction. The one-code scheme also brings entangled face manipulations and limited flexibility in editing face components.

View Article and Find Full Text PDF
Article Synopsis
  • Identifying synergistic drug combinations (SDCs) is complicated because they vary by cell line, leading to challenges in current computational methods.
  • The paper introduces SDCNet, a new model that utilizes an encoder-decoder framework to learn both common and specific features of SDCs across different cell lines simultaneously.
  • Through experiments, SDCNet outperforms existing methods and proves effective in predicting reliable SDCs for previously unseen cell lines.
View Article and Find Full Text PDF

piRNAs function as guardians of the genome by silencing non-self nucleic acids and transposable elements in animals. Many piRNA factors are enriched in perinuclear germ granules, but whether their localization is required for piRNA biogenesis or function is not known. Here we show that GLH/VASA helicase mutants exhibit defects in forming perinuclear condensates containing PIWI and other small RNA cofactors.

View Article and Find Full Text PDF

Current face recognition tasks are usually carried out on high-quality face images, but in reality, most face images are captured under unconstrained or poor conditions, e.g., by video surveillance.

View Article and Find Full Text PDF

Learning to synthesize free-hand sketches controllably according to specified categories and sketching styles is a challenging task, due to the lack of training data with category labels and style labels. One choice to control the synthesis is by self-organizing a latent coding space to preserve the similarity of structural patterns of the observed data. A practical way is introducing a Gaussian mixture prior over the latent codes, where each Gaussian component represents a specific categorical or stylistic pattern.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) epidemic continues to spread rapidly around the world and nearly 20 millions people are infected. This paper utilises both single-locus analysis and joint-SNPs analysis for detection of significant single nucleotide polymorphisms (SNPs) in the phenotypes of symptomatic versus asymptomatic, the early collection time versus the late collection time, the old versus the young, and the male versus the female. Also, this paper analyses the relationship between any two SNPs via linkage disequilibrium analysis, and visualises the patterns of cumulative mutations of SNPs over collection time.

View Article and Find Full Text PDF

To analyze the mA methylome of osteosarcoma stem cells (OSCs). Chemoresistant OSCs were enriched by doxorubicin treatment. Expression of mA-related enzymes was detected by quantitative real-time-PCR and western blot.

View Article and Find Full Text PDF

Proper regulation of germline gene expression is essential for fertility and maintaining species integrity. In the germline, a diverse repertoire of regulatory pathways promote the expression of endogenous germline genes and limit the expression of deleterious transcripts to maintain genome homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in the germline, modulating germline chromatin and meiotic chromosome organization.

View Article and Find Full Text PDF

PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs that guard animal genomes against mutation by silencing transposons. In addition, recent studies have reported that piRNAs silence various endogenous genes. Tens of thousands of distinct piRNAs made in animals do not pair well to transposons and currently the functions and targets of piRNAs are largely unexplored.

View Article and Find Full Text PDF

In Drosophila, the piRNAs that guide germline transposon silencing are produced from heterochromatic clusters marked by the HP1 homolog Rhino. We show that Rhino promotes cluster transcript association with UAP56 and the THO complex, forming RNA-protein assemblies that are unique to piRNA precursors. UAP56 and THO are ubiquitous RNA-processing factors, and null alleles of uap56 and the THO subunit gene tho2 are lethal.

View Article and Find Full Text PDF

pirScan is a web-based tool for identifying C. elegans piRNA-targeting sites within a given mRNA or spliced DNA sequence. The purpose of our tool is to allow C.

View Article and Find Full Text PDF

In metazoans, Piwi-related Argonaute proteins engage piRNAs (Piwi-interacting small RNAs) to defend the genome against invasive nucleic acids, such as transposable elements. Yet many organisms-including worms and humans-express thousands of piRNAs that do not target transposons, suggesting that piRNA function extends beyond genome defense. Here, we show that the X chromosome-derived piRNA 21ux-1 downregulates XOL-1 (XO Lethal), a master regulator of X chromosome dosage compensation and sex determination in Caenorhabditis elegans.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0civs7gb9sgn554lv1bk2b6mgu86guse): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once