Publications by authors named "Shikai Li"

Background: In-stent restenosis (ISR) is a crucial factor that affects the long-term efficacy of intracranial bare metal stent (BMS) implantation for intracranial atherosclerotic stenosis (ICAS). Patients with intracranial ISR are at a high risk of recurrent ischaemic events. The NOVA intracranial drug-eluting stent (DES) trial demonstrates that a DES can reduce ISR and stroke recurrence after intracranial bare stent implantation.

View Article and Find Full Text PDF

The 3D printing method based on digital light processing (DLP) technology can transform liquid resin materials into complex 3D models. However, due to the limitations of digital micromirror device (DMD) specifications, the normal DLP 3D printing method (NDPM) cannot simultaneously process large-size and small-feature parts. Therefore, a scalable DLP 3D printing method (SDPM) was proposed.

View Article and Find Full Text PDF

Wound healing is often impaired in patients with diabetes. Mesenchymal stem cells (MSCs) and MSCs-derived nanovesicles (MNVs) hold promise as therapeutic agents for managing diabetic wounds. However, efficient delivery and controlled release of MNVs within these wounds are essential for maximizing therapeutic effectiveness.

View Article and Find Full Text PDF

Video-to-Video synthesis (Vid2Vid) gains remarkable performance in generating a photo-realistic video from a sequence of semantic maps, such as segmentation, sketch and pose. However, this pipeline is heavily limited to high computational cost and long inference latency, mainly attributed to two essential factors: 1) network architecture parameters, 2) sequential data stream. Recently, the parameters of image-based generative models have been significantly reduced via more efficient network architectures.

View Article and Find Full Text PDF

Four new species of the genus Sundevall, 1833 collected from Xizang, China, are described: Wang & Mi, (♂♀), Wang & Mi, (♂♀), Wang & Mi, (♀) and Wang & Mi, (♀). Diagnostic photos of the habitus and copulatory organs and a distributional map are provided.

View Article and Find Full Text PDF

Magnesium alloy is an excellent material for biodegradable cerebrovascular stents. However, the rapid degradation rate of magnesium alloy will make stent unstable. To improve the biocompatibility of magnesium alloy, in this study, biodegradable sodium alginate and carboxymethyl chitosan (SA/CMCS) was used to coat onto hydrothermally treated the surface of magnesium alloy by a dipping coating method.

View Article and Find Full Text PDF

As the number of patients increases, physicians are dealing with more and more cases of degenerative spine pathologies on a daily basis. To reduce the workload of healthcare professionals, we propose a modified Swin-UNet network model. Firstly, the Swin Transformer Blocks are improved using a residual post-normalization and scaling cosine attention mechanism, which makes the training process of the model more stable and improves the accuracy.

View Article and Find Full Text PDF

Advanced oxidation processes (AOPs), based on sulfate radical (SO) produced by peroxymonosulfate (PMS), can effectively mineralize refractory organic pollutants. However, the coexistence of anions and natural organic matters in actual wastewater prevents the application of AOPs. A simple one-step method was used to prepare FeS/FeO co-modified biochar materials (FFB) that could activate PMS to degrade quinclorac (QNC) with a removal rate of 100%, even exhibiting optimum degradation of QNC reached 99.

View Article and Find Full Text PDF

Neither chemical nor physical adsorption play well in heavy metals remediation in acid soil due to the competing behavior of abundant protons, where stable chelators that can be reused are of significant demand. Herein, biochar with abundant nitro and carboxyl groups is prepared, which can be assembled into self-supporting electrode. Under the catalyzation of electricity, the surface decorated -NO on the biochar can be in situ transformed into -NH.

View Article and Find Full Text PDF

Rapeseed ( L.) is a globally important oilseed crop with various uses, including the consumption of its succulent stems as a seasonal vegetable, but its uniaxial branching habit limits the stem yield. Therefore, developing a multi-stem rapeseed variety has become increasingly crucial.

View Article and Find Full Text PDF

Through symbiosis with plants, arbuscular mycorrhizal (AM) fungi effectively improve the availability of soil nitrogen (N). However, the mechanism through which AM and associated extraradical mycelium affect soil N mineralization remains unknow. We carried out an soil culture experiment by using in-growth cores in plantations of three subtropical tree species, , , and .

View Article and Find Full Text PDF

Three-dimensional (3D) bioprinting is a powerful technique for the production of tissue-like structures to study cell behavior and tissue properties. A major challenge in 3D extrusion bioprinting is the limited diversity of bioinks, which fulfills the requirements of shear-thinning and strain recovery behaviors and can be solidified by a crosslinking process to retain their shape after printing. Herein, we aimed to develop a natural biopolymer-based formula with dual crosslinking performance to formulate a cell-laden bioink.

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses the limitations of current photocatalytic materials for controlling food pathogens, which often rely on metals that lack stability and may cause secondary pollution, prompting interest in non-metallic alternatives.
  • - A new non-metallic composite called B@RP, made from rice shell biochar and red phosphorus, was created to effectively eliminate bacteria like E. coli through photocatalysis and photothermal effects.
  • - B@RP demonstrated impressive performance by completely removing E. coli within 2 hours of exposure to light, maintaining 100% sterilization efficiency after 9 cycles, making it a promising, safe option for the food industry.
View Article and Find Full Text PDF

Enhancing osteogenesis by promoting neural network reconstruction and neuropeptide release is considered to be an attractive strategy for repairing of critical size bone defects. However, traumatic bone defects often activate the damaged sympathetic nervous system (SNS) in the defect area and release excessive catecholamine to hinder bone defect repair. Herein, a 3D printed scaffold loaded with the calcium channel blocker-nifedipine is proposed to reduce the concentration of catecholamine present in the bone defect region and to accelerate bone healing.

View Article and Find Full Text PDF

Three-dimensional (3D) bioprinting holds promise for precise repair of bone defects, but rapid formation of effective vascularized tissue by 3D-printed construct is still a challenge. In this study, deferoxamine (DFO)-loaded ethosomes (Eth) were combined with gelatin methacrylate (GelMA)/gellan gum methacrylate (GGMA) hybrid bioink to fabricate 3D-printed scaffold by photo- and ion-crosslinking. The GelMA/GGMA bioinks showed excellent printability and improved mechanical property through the double-crosslinking method.

View Article and Find Full Text PDF

Radish (Raphanus sativus L.) belongs to the family Brassicaceae. The Yunnan red radish variety contains fairly relatively large amounts of anthocyanins, making them important raw materials for producing edible red pigment.

View Article and Find Full Text PDF

In this study, an effective and facile strategy is reported to construct a multifunctional nanoplatform by in situ doping metal manganese on gold core mesoporous silica nanoparticles (Au@MMSN). After further modification of alendronate (Ald) on Au@MMSN, the obtained Au@MMSN-Ald efficiently integrates bone targeted chemo-chemodynamic combination therapy and dual-modality computed tomography/magnetic resonance (CT/MR) imaging into a single platform. In particular, Au@MMSN-Ald exhibits excellent tumor microenvironment responsive drug release efficiency.

View Article and Find Full Text PDF

Purpose: The objective of this research was to survey the therapeutic action of simvastatin (Sim) on intestinal ischemia/reperfusion injury (II/RI) by modulating Omi/HtrA2 signaling pathways.

Methods: Sprague Dawley rats were pretreated with 40 mg/kg Sim and then subjected to 1 hour of ischemia and 3 hours of reperfusion. The blood and intestinal tissues were collected, pathologic injury was observed, the contents of serum tumor necrosis factor-α and interleukin-6 (IL-6) were estimated, and superoxide dismutase, methane dicarboxylic aldehyde, and cysteinyl aspartate specific proteinase-3 (caspase-3) levels, as well as the expressions of Omi/HtrA2 and caspase-3, were measured in the intestinal tissues.

View Article and Find Full Text PDF

Background: Flowering time is an important trait in Brassica rapa crops. FLOWERING LOCUS C (FLC) is a MADS-box transcription factor that acts as a potent repressor of flowering. Expression of FLC is silenced when plants are exposed to low temperature, which activates flowering.

View Article and Find Full Text PDF