Maize is an important crop used for food, feed, and fuel. Abiotic stress is an important factor affecting maize yield. The / gene family encodes class-specific secretory proteins that play an important role in the response to abiotic stress in plants.
View Article and Find Full Text PDFMitochondria are essential organelles that generate energy via oxidative phosphorylation. Plant mitochondrial genome encodes some of the respiratory complex subunits, and these transcripts require accurate processing, including C-to-U RNA editing and intron splicing. Pentatricopeptide repeats (PPR) proteins are involved in various organellar RNA processing events.
View Article and Find Full Text PDFSplicing of plant mitochondrial introns is facilitated by numerous nucleus-encoded protein factors. Although some splicing factors have been identified in plants, the mechanism underlying mitochondrial intron splicing remains largely unclear. In this study, we identified a small P-type pentatricopeptide repeat (PPR) protein containing merely four PPR repeats, small PPR protein 2 (SPR2), which is required for the splicing of more than half of the introns in maize (Zea mays) mitochondria.
View Article and Find Full Text PDFIn flowering plants, C-to-U RNA editing can be critical to normal functions of mitochondrion-encoded proteins. Mitochondrial C-to-U RNA editing is facilitated by many factors from diverse protein families, of which the pentatricopeptide repeat (PPR) proteins play an important role. Owing to their large number and frequent embryo lethality in mutants, functions of many PPRs remain unknown.
View Article and Find Full Text PDFRNA C-to-U editing is important to the expression and function of organellar genes in plants. Although several families of proteins have been identified to participate in this process, the underlying mechanism is not fully understood. Here we report the function of EMP80 in the C-to-U editing at the nad7-769 and atp4-118 sites, and the potential recruitment of ZmDYW2 as a trans deaminase in maize (Zea mays) mitochondria.
View Article and Find Full Text PDFIn flowering plants, mitochondrial genes contain approximately 20-26 introns. Splicing of these introns is essential for mitochondrial gene expression and function. Recent studies have revealed that both nucleus- and mitochondrion-encoded factors are required for intron splicing, but the mechanism of splicing remains largely unknown.
View Article and Find Full Text PDFRNA splicing is an essential post-transcriptional regulation in plant mitochondria and chloroplasts. As the mechanism of RNA splicing remains obscure, identification and functional elucidation of new splicing factors are necessary. Through a characterization of two maize mutants, we cloned () and ().
View Article and Find Full Text PDFMitochondrial genes in flowering plants contain predominantly group II introns that require precise splicing before translation into functional proteins. Splicing of these introns is facilitated by various nucleus-encoded splicing factors. Due to lethality of mutants, functions of many splicing factors have not been revealed.
View Article and Find Full Text PDFC-to-U RNA editing in plant mitochondria requires the participation of many nucleus-encoded factors, most of which are pentatricopeptide repeat (PPR) proteins. There is a large number of PPR proteins and the functions many of them are unknown. Here, we report a mitochondrion-localized DYW-subgroup PPR protein, PPR27, which functions in the editing of multiple mitochondrial transcripts in maize.
View Article and Find Full Text PDFPentatricopeptide repeat (PPR) protein comprises a large family, participating in various aspects of organellar RNA metabolism in land plants. There are approximately 600 PPR proteins in maize, but the functions of many PPR proteins remain unknown. In this study, we defined the function of PPR18 in the -splicing of intron 1 in mitochondria and seed development in maize.
View Article and Find Full Text PDFTiO is an attractive electrode material in fast charging/discharging supercapacitors because of its high specific surface area. However, the low capacitance of TiO nanotubes as-anodized in the classical electrolyte restricts their further application in supercapacitors. Here, we study the performances of larger-diameter nanotubes with a double-layer structure fabricated in an NHF/phosphoric acid (HPO) mixed electrolyte.
View Article and Find Full Text PDFAnodic titania nanotube arrays (TNTAs) with higher aspect ratio are observed to be liable to spontaneous curling or delamination from the underlying titanium (Ti) metal once dried because of the poor interfacial adhesion of the TNTA layer to the underlying Ti, especially when a thin Ti sheet is used. The interfacial adhesion strength was shown to decrease with increasing thickness of the TNTA layer. In this work, although the preparation of TNTAs in a frequently used fluoride-containing solution was completed, different anodization processes were further performed at lower current densities or at lower voltages for a short time in the same electrolyte to increase the adhesion.
View Article and Find Full Text PDF