Heterogeneous electrode materials possess abundant heterointerfaces with a localized "space charge effect", which enhances capacity output and accelerates mass/charge transfer dynamics in energy storage devices (ESDs). These promising features open new possibilities for demanding applications such as electric vehicles, grid energy storage, and portable electronics. However, the fundamental principles and working mechanisms that govern heterointerfaces are not yet fully understood, impeding the rational design of electrode materials.
View Article and Find Full Text PDFReproductive ageing is one of the earliest human ageing phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline; however, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to Caenorhabditis elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes.
View Article and Find Full Text PDFReproductive aging is one of the earliest human aging phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline. However, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive mutants.
View Article and Find Full Text PDFIn recent years, there have been significant advancements in Al-ion battery development, resulting in high voltage and capacity. Traditionally, only carbon-based materials with layered structures and strong bonding capabilities can deliver superior performance. However, most other materials exhibited low discharge voltages of 1.
View Article and Find Full Text PDFMg-ion batteries offer a safe, low-cost, and high-energy density alternative to current Li-ion batteries. However, nonaqueous Mg-ion batteries struggle with poor ionic conductivity, while aqueous batteries face a narrow electrochemical window. Our group previously developed a water-in-salt battery with an operating voltage above 2 V yet still lower than its nonaqueous counterpart because of the dominance of proton over Mg-ion insertion in the cathode.
View Article and Find Full Text PDFAqueous Al-ion battery (AAIB) is regarded as a promising candidate for large-scale energy storage systems due to its high capacity, high safety, and low cost, with MnO proved to be a high-performance cathode. However, the potential commercial application of this type of battery is plagued by the frequent structural collapse of MnO . Herein, an in situ, electrochemically reformed, urchin-like Al MnO cathode is developed for water-in-salt electrolyte-based AAIBs.
View Article and Find Full Text PDFExploring earth-abundant and cost-effective catalysts with high activity and stability for a hydrogen evolution reaction (HER) is of great importance to practical applications of alkaline water electrolysis. Here, we report on A-site Ba-deficiency doping as an effective strategy to enhance the electrochemical activity of BaCoFeZrYO for HER, which is related to the formation of oxygen vacancies around active Co/Fe ions. By comparison with the benchmarking BaSrCoFeO , one of the most spotlighted perovskite oxides, the BaCoFeZrYO oxide has lower overpotential and smaller Tafel slope.
View Article and Find Full Text PDFA decline in female reproduction is one of the earliest hallmarks of aging in many animals, including invertebrates and mammals [1-4]. The insulin/insulin-like growth factor-1 signaling (IIS) pathway has a conserved role in regulating longevity [5] and also controls reproductive aging [2, 6]. Although IIS transcriptional targets that regulate somatic aging have been characterized [7, 8], it was not known whether the same mechanisms influence reproductive aging.
View Article and Find Full Text PDFFemale reproductive decline is one of the first aging phenotypes in humans, manifested in increasing rates of infertility, miscarriage, and birth defects in children of mothers over 35. Recently, Caenorhabditis elegans (C. elegans) has been developed as a model to study reproductive aging, and several studies have advanced our knowledge of reproductive aging regulation in this organism.
View Article and Find Full Text PDFReproductive cessation is perhaps the earliest aging phenotype that humans experience. Similarly, reproduction of Caenorhabditis elegans ceases in mid-adulthood. Although somatic aging has been studied in both worms and humans, mechanisms regulating reproductive aging are not yet understood.
View Article and Find Full Text PDFFemale reproductive cessation is one of the earliest age-related declines humans experience, occurring in mid-adulthood. Similarly, Caenorhabditis elegans' reproductive span is short relative to its total life span, with reproduction ceasing about a third into its 15-20 day adulthood. All of the known mutations and treatments that extend C.
View Article and Find Full Text PDFIn order to improve hydrophilicity and biocompatibility of chitosan, hyaluronic acid was immobilized onto the surface of chitosan film. The structure of films was characterized by Fourier transformed infrared spectroscopy with attenuated total reflectance (ATR-FTIR), x-ray photoelectron spectroscopy (XPS) and zeta potential. Results confirmed that hyaluronic acid was successfully immobilized on chitosan film.
View Article and Find Full Text PDFHypermethylation of CpG islands is well known as a major inactivation mechanism of tumor suppressor genes. E-cadherin (E-cad) as a tumor invasion suppressor has been reported in several invasive and metastatic carcinomas. However, its significance in carcinogenesis of primary non-small cell lung cancer (NSCLC) is not well documented.
View Article and Find Full Text PDFBackground: Previous genetic evidence suggested that the C. elegans TGF-beta Dauer pathway is responsible solely for the regulation of dauer formation, with no role in longevity regulation, whereas the insulin/IGF-1 signaling (IIS) pathway regulates both dauer formation and longevity.
Results: We have uncovered a significant longevity-regulating activity by the TGF-beta Dauer pathway that is masked by an egg-laying (Egl) phenotype; mutants in the pathway display up to 2-fold increases in life span.
Objective: To screen and identify differentially expressed genes between a fertile patient and another infertile patient who belonged to a large Chinese pedigree affected with androgen insensitivity syndrome (AIS).
Methods: We constructed the forward and reversed subtracted libraries using genital skin fibroblasts (GSF), which were obtained from the fertile patient MJ and infertile patient ZGJ, as tester respectively. Candidate clones were screened with colony in situ hybridization, dot blot, and Southern blot analysis step by step and conformed with Northern blot analysis.
We have created genital skin fibroblast cell lines directly from three patients in a Chinese family affected by androgen insensitivity syndrome (AIS). All patients in the family share an identical AR Arg840Cys mutant but show different disease phenotypes. By using the cell lines, we find that the mutation has not influenced a normal androgen-binding capacity at 37 degrees C but has reduced the affinity for androgens and may cause thermolability of the androgen-receptor complex.
View Article and Find Full Text PDF