Publications by authors named "Shijie Tu"

Vector vortex beams (VVBs) have attracted extensive attention due to their unique properties and their wide applications in fields such as optical manipulation and optical imaging. However, the wavefronts of the vector vortex beams are highly scrambled when they encounter highly scattering media (HSM), such as thick biological tissues, which greatly prevents the applications of VVBs behind HSM. To address this issue, we propose a scheme to construct VVBs of freewill position on the surface of hybrid-order Poincaré sphere (HyOPS) through HSM.

View Article and Find Full Text PDF

Achieving nanometer-scale resolution remains challenging in expansion microscopy due to photon loss. To address this concern, here we develop a multi-color expansion stimulated emission depletion technique based on small-molecule probes to realize high labeling density and intensity. Our method substantially lowers the barrier to visualizing diverse intracellular proteins and their interactions in three dimensions.

View Article and Find Full Text PDF

Structured illumination microscopy (SIM) allows non-invasive visualization of nanoscale subcellular structures. However, image acquisition and reconstruction become the bottleneck to further improve the imaging speed. Here, we propose a method to accelerate SIM imaging by combining the spatial re-modulation principle with Fourier domain filtering and using measured illumination patterns.

View Article and Find Full Text PDF

Structured illumination microscopy (SIM) is a powerful technique for providing super-resolution imaging, but its reconstruction algorithm, i.e., linear reconstruction structured illumination microscopy (LRSIM) algorithm in the Fourier domain, limits the imaging speed due to its computational effort.

View Article and Find Full Text PDF