Advanced oxidation processes using TiO-based nanomaterials are sustainable technologies that hold great promise for the degradation of many types of pollutants including pharmaceutical residues. A wide variety of heterostructures coupling TiO with visible-light active nanomaterials have been explored to shift its photocatalytic properties to harness sun irradiation but a systematic comparison between them is lacking in the current literature. Furthermore, the high number of proposed nanostructures with different size, morphology, and surface area, and the often complex synthesis processes hamper the transition of these materials into commercial and effective solutions for environmental remediation.
View Article and Find Full Text PDFCerium oxide nanozymes (CeONZs) are attracting vast attention due to their antioxidant and catalytic properties and mimic the activities of multiple endogenous enzymes. However, as is the case for nanomedicines in general, the success in showing their unique medical applications has not been matched by an understanding of their pharmacokinetics, which is delaying their implementation in clinical settings. Furthermore, the data of their modifications in body fluids and the impact on their activity are scarce.
View Article and Find Full Text PDFThe integration of progressive technologies such as nanomedicine with the use of natural products from traditional medicine (TM) provides a unique opportunity for the longed-for harmonization between traditional and modern medicine. Although several actions have been initiated decades ago, a disparity of reasons including some misunderstandings between each other limits the possibilities of a truly complementation. Herein, we analyze some common challenges between nanomedicine and traditional Chinese medicine (TCM).
View Article and Find Full Text PDFSulfidated nano zero-valent iron (S-nZVI) was used to remove various pollutants from wastewater. However, the instability, poor dispersibility, and low electron transfer efficiency of S-nZVI limit its application. Herein, graphene oxide supported sulfidated nano zero-valent iron (S-nZVI@GO) was successfully synthesized using graphene oxide (GO) as a carrier.
View Article and Find Full Text PDF