Ultrafine Pt-based alloy nanoparticles supported on carbon substrates have attracted significant attention due to their catalytic potential. Nevertheless, ensuring the stability of these nanoparticles remains a critical challenge, impeding their broad application. In this work, novel nanodot arrays (NAs) are introduced where superfine alloy nanoparticles are uniformly implanted in a 2D carbon substrate and securely anchored.
View Article and Find Full Text PDFLow-concentration electrolytes (LCEs) have attracted great attention due to their cost effectiveness and low viscosity, but suffer undesired organic-rich interfacial chemistry and poor oxidative stability. Herein, a unique latent solvent, 1,2-dibutoxyethane (DBE), is proposed to manipulate the anion-reinforced solvation sheath and construct a robust inorganic-rich interface in a 0.5 M electrolyte.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Perovskite nanocrystals are advantageous for interfacial passivation of perovskite solar cells (PSCs), but the insulating long alkyl chain surface ligands impede the charge transfer, while the conventional ligand exchange would possibly introduce surface defects to the nanocrystals. In this work, we reported novel in situ modification of CsPbBr nanocrystals using a short chain conjugated molecule 2-methoxyphenylethylammonium iodide (2-MeO-PEAI) for interfacial passivation of PSCs. Transmission electron microscopy studies with atomic resolution unveil the transformation from cubic CsPbBr to Ruddlesden-Popper phase (RPP) nanocrystals due to halogen exchange.
View Article and Find Full Text PDFDiluents have been extensively employed to overcome the disadvantages of high viscosity and sluggish kinetics of high-concentration electrolytes, but generally do not change the pristine solvation structure. Herein, a weakly coordinating diluent, hexafluoroisopropyl methyl ether (HFME), is applied to regulate the coordination of Na with diglyme and anion and form a diluent-participated solvate. This unique solvation structure promotes the accelerated decomposition of anions and diluents, with the construction of robust inorganic-rich electrode-electrolyte interphases.
View Article and Find Full Text PDFUnderwater image enhancement has become the requirement for more people to have a better visual experience or to extract information. However, underwater images often suffer from the mixture of color distortion and blurred quality degradation due to the external environment (light attenuation, background noise and the type of water). To solve the above problem, we design a Divide-and-Conquer network (DC-net) for enhancing underwater image, which mainly consists of a texture network, a color network and a refinement network.
View Article and Find Full Text PDFThe instability of palladium-based binary alloys hinders their wide application in the oxygen reduction processes. Here, we prepared Mo-doped PdCu nanoparticles with controllable dopant content and valence. Further research has revealed that Mo, particularly Mo, may effectively suppress the oxidation of Pd and Cu, optimize the oxygen binding of Pd, and increase catalytic activity and stability.
View Article and Find Full Text PDFThe oxygen evolution reaction is known to be a kinetic bottleneck for water splitting. Triggering the lattice oxygen oxidation mechanism (LOM) can break the theoretical limit of the conventional adsorbate evolution mechanism and enhance the oxygen evolution reaction kinetics, yet the unsatisfied stability remains a grand challenge. Here, we report a high-entropy MnFeCoNiCu layered double hydroxide decorated with Au single atoms and O vacancies (Au-MnFeCoNiCu LDH), which not only displays a low overpotential of 213 mV at 10 mA cm and high mass activity of 732.
View Article and Find Full Text PDFUniform tensile ductility (UTD) is crucial for the forming/machining capabilities of structural materials. Normally, planar-slip induced narrow deformation bands localize the plastic strains and hence hamper UTD, particularly in body-centred-cubic (bcc) multi-principal element high-entropy alloys (HEAs), which generally exhibit early necking (UTD < 5%). Here we demonstrate a strategy to tailor the planar-slip bands in a Ti-Zr-V-Nb-Al bcc HEA, achieving a 25% UTD together with nearly 50% elongation-to-failure (approaching a ductile elemental metal), while offering gigapascal yield strength.
View Article and Find Full Text PDFAtomically dispersed nitrogen-coordinated 3d transition-metal site on carbon support (M-NC) are promising alternatives to Pt group metal-based catalysts toward oxygen reduction reaction (ORR). However, despite the excellent activities of most of M-NC catalysts, such as Fe-NC, Co-NC et al., their durability is far from satisfactory due to Fenton reaction.
View Article and Find Full Text PDFWheat spike detection has important research significance for production estimation and crop field management. With the development of deep learning-based algorithms, researchers tend to solve the detection task by convolutional neural networks (CNNs). However, traditional CNNs equip with the inductive bias of locality and scale-invariance, which makes it hard to extract global and long-range dependency.
View Article and Find Full Text PDFPest disaster severely reduces crop yield and recognizing them remains a challenging research topic. Existing methods have not fully considered the pest disaster characteristics including object distribution and position requirement, leading to unsatisfactory performance. To address this issue, we propose a robust pest detection network by two customized core designs: multi-scale super-resolution (MSR) feature enhancement module and Soft-IoU (SI) mechanism.
View Article and Find Full Text PDFCrystalline-amorphous composite have the potential to achieve high strength and high ductility through manipulation of their microstructures. Here, we fabricate a TiZr-based alloy with micrometer-size equiaxed grains that are made up of three-dimensional bicontinuous crystalline-amorphous nanoarchitectures (3D-BCANs). In situ tension and compression tests reveal that the BCANs exhibit enhanced ductility and strain hardening capability compared to both amorphous and crystalline phases, which impart ultra-high yield strength (~1.
View Article and Find Full Text PDFBackground: Fast identification of damaged soybean seeds has undeniable importance in seed sorting and food quality. Mechanical vibration is generally used in soybean seed sorting, but this can seriously damage soybean seeds. The convolutional neural network (CNN) is considered an effective method for location and segmentation tasks.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2021
The osteogenic activity of medical metal can be improved by lowering its surface stiffness and elastic modulus. However, it is very difficult to directly reduce the elastic modulus of medical metal surfaces. In this paper, with selected parameters, the titanium surface was treated via femtosecond laser irradiation.
View Article and Find Full Text PDFDespite the rapid development of perovskite solar cells (PSCs) over the past few years, the conversion of solar energy into electricity is not efficient enough or cost-competitive yet. The principal energy loss in the conversion of solar energy to electricity fundamentally originates from the non-absorption of low-energy photons ascribed to Shockley-Queisser limits and thermalization losses of high-energy photons. Enhancing the light-harvesting efficiency of the perovskite photoactive layer by developing efficient photo management strategies with functional materials and arrays remains a long-standing challenge.
View Article and Find Full Text PDFIn advanced fission and fusion reactors, structural materials suffer from high dose irradiation by energetic particles and are subject to severe microstructure damage. He atoms, as a byproduct of the (n, α) transmutation reaction, could accumulate to form deleterious cavities, which accelerate radiation-induced embrittlement, swelling and surface deterioration, ultimately degrade the service lifetime of reactor materials. Extensive studies have been performed to explore the strategies that can mitigate He ion irradiation damage.
View Article and Find Full Text PDFElectrocatalytic hydrogen evolution has attracted a great deal of attention due to the urgent need for clean energy. Herein, we demonstrate the synthesis of ternary pyrite-type cobalt phosphosulphide (CoPS) nanoparticles supported on a nitrogen-doped carbon matrix, CoPS/N-C, through carbonization and subsequent phosphosulfurization of Co-based zeolitic imidazolate frameworks (ZIF-67), as promising hydrogen evolution reaction (HER) electrocatalysts in both acidic and alkaline solutions. The polyhedral structure of ZIF-67 can be well maintained in the as-prepared CoPS/N-C nanocomposites.
View Article and Find Full Text PDFChanging the composition and/or structure of some metal oxides at the atomic level can significantly improve their performance in different applications. Although many strategies have been developed, the introduction of heteroatoms, particularly anions to the internal part of metal oxide particles, is still not adequate. Here, an effective strategy is demonstrated for directly preparing polycrystalline decahedral plates of substitutional carbon-doped anatase TiO from titanium (IV) oxalate by a thermally induced topotactic transition in an inert atmosphere.
View Article and Find Full Text PDFMagnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures.
View Article and Find Full Text PDFComb Chem High Throughput Screen
August 2017
Background: Heterocyclic scaffold, benzotriazole and its derivatives are potential anaesthetic agents that act locally.
Objective: QSAR and docking analysis of previously synthesized benzotriazolyl derivatives were modelled for their local anaesthetic action using computer assisted multiple regression analysis. It provides the insight about the structural requirements for the local anaesthetic action.
Polymer electrolyte membrane fuel cells (PEMFCs) running on hydrogen are attractive alternative power supplies for a range of applications, with in situ release of the required hydrogen from a stable liquid offering one way of ensuring its safe storage and transportation before use. The use of methanol is particularly interesting in this regard, because it is inexpensive and can reform itself with water to release hydrogen with a high gravimetric density of 18.8 per cent by weight.
View Article and Find Full Text PDFInterface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them.
View Article and Find Full Text PDF