Achieving high-crystalline-quality, large-size iron garnet magneto-optic (MO) films on silicon substrates remains a critical challenge for CMOS-compatible on-chip non-reciprocal devices like isolators and circulators. In this study, we explored ion slicing on commercial yttrium iron garnet (YIG) crystals, bismuth-doped iron garnet (BIG), and newly developed YIG ceramics. After He ion implantation, wafer bonding and annealing, the BIG film on silicon was successfully fabricated, but its thickness and crystalline phase deviated from expectations.
View Article and Find Full Text PDFMicron-sized Si anodes garner renewed attention due to their advantages of low cost, small specific surface area, and high energy density. However, micron-sized Si anodes undergo significant volume changes during lithiation/delithiation, leading to particle cracking and pulverization. This study employs the tape casting method and ultrafast high-temperature sintering technology to construct a porous sheet, within which a solid framework constrains the Si particles.
View Article and Find Full Text PDFIn recent years, significant progress has been made in the on-chip integration of Ti:sapphire amplifiers and lasers, showing great potential in device miniaturization, cost reduction, and mass production. However, the further integration of such devices on standard CMOS platforms has been challenging due to its limits on the wafer bonding method between gain materials and substrates. Here, we present a novel, to the best of our knowledge, SiN on-chip broadband optical waveguide amplifier scheme with an ultra-wide bandwidth of 650-900 nm and a peak gain of 28 dB based on an ion-sliced Ti:sapphire platform.
View Article and Find Full Text PDF