New approaches for elucidating mechanisms of diseases including environmental diseases, cancer, metabolic diseases, infectious diseases are challenging. After the presentation on elucidating the mechanism of cancer and infectious diseases, lectures by Dr. Tae-Young Kim (Korea) on metabolic deuterium oxide labeling in environmental diseases, Dr.
View Article and Find Full Text PDFCausal networks are important for understanding disease signaling alterations. To reveal the network pathways affected in the epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs), which are related to the poor prognosis of cancer, the molecular networks and gene expression in diffuse- and intestinal-type gastric cancer (GC) were analyzed. The network pathways in GC were analyzed using Ingenuity Pathway Analysis (IPA).
View Article and Find Full Text PDFGastrointestinal cancer is one of the most common malignancies worldwide [...
View Article and Find Full Text PDFWith rapid industrialization, urbanization, and climate change, the impact of environmental factors on human health is becoming increasingly evident and understanding the complex mechanisms involved is vital from a healthcare perspective. Nevertheless, the relationship between physiological stress resulting from environmental stressors and environmental disease is complex and not well understood. Chronic exposure to environmental stressors, such as air and water contaminants, pesticides, and toxic metals, has been recognized as a potent elicitor of physiological responses ranging from systemic inflammation to immune system dysregulation causing or progressing environmental diseases.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2023
Tumor resistance and recurrence have been associated with the presence of cancer stem cells (CSCs) in tumors. The functions and survival of the CSCs have been associated with several intracellular and extracellular features. Particularly, the abnormal glycosylation of these signaling pathways and markers of CSCs have been correlated with maintaining survival, self-renewal and extravasation properties.
View Article and Find Full Text PDFMicroenvironment of cancer stem cells (CSCs) consists of a variety of cells and inter-cellular matrix and communications of the components. The microenvironment of CSCs maintains the stemness feature of the CSCs. Several cell types which communicate each other via signaling molecules surrounding CSCs are main factors of the CSC microenvironment.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT), a cellular phenotypic change from epithelial to mesenchymal-like features, is related to the resistance and metastasis of cancer stem cells (CSCs). Several signal transduction mechanisms induce EMT, which causes the gene expression alteration to induce the acquisition of resistance and metastasis in cancer. EMT is characterized with high gene expression of cadherin 2 (N-cadherin) and vimentin, and sparse cell-cell junction.
View Article and Find Full Text PDFWhile human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies.
View Article and Find Full Text PDFReactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself.
View Article and Find Full Text PDFOn April 28-29, 2021, 50 scientists from different fields of expertise met for the 3rd online CIAO workshop. The CIAO project “Modelling the Pathogenesis of COVID-19 using the Adverse Outcome Pathway (AOP) framework” aims at building a holistic assembly of the available scientific knowledge on COVID-19 using the AOP framework. An individual AOP depicts the disease progression from the initial contact with the SARS-CoV-2 virus through biological key events (KE) toward an adverse outcome such as respiratory distress, anosmia or multiorgan failure.
View Article and Find Full Text PDFDynamic regulation in molecular networks including cell cycle regulation and DNA damage response play an important role in cancer. To reveal the feature of cancer malignancy, gene expression and network regulation were profiled in diffuse- and intestinal-type gastric cancer (GC). The results of the network analysis with Ingenuity Pathway Analysis (IPA) showed that the activation states of several canonical pathways related to cell cycle regulation were altered.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) plays an important role in the acquisition of cancer stem cell (CSC) feature and drug resistance, which are the main hallmarks of cancer malignancy. Although previous findings have shown that several signaling pathways are activated in cancer progression, the precise mechanism of signaling pathways in EMT and CSCs are not fully understood. In this study, we focused on the intestinal and diffuse-type gastric cancer (GC) and analyzed the gene expression of public RNAseq data to understand the molecular pathway regulation in different subtypes of gastric cancer.
View Article and Find Full Text PDFThe mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs demonstrating EMT feature remain after cancer treatment, which leads to drug resistance, recurrence, metastasis and malignancy of cancer.
View Article and Find Full Text PDFMedical treatments of neuron-related disorders are limited due to the difficulty of targeting brain cells. Major drawbacks are the presence of the blood-brain barrier and the lack of specificity of the drugs for the diseased cells. Nanomedicine-based approaches provide promising opportunities for overcoming these limitations.
View Article and Find Full Text PDFThe Organisation for Economic Co-operation and Development (OECD) has initiated the adverse outcome pathway (AOP) Development Program in which the concept of AOP is applied to evaluate the safety of molecules such as chemicals. This program aims to assist regulatory needs and construct a knowledge base by accumulating AOP case studies. AOP consists of a molecular initiating event (MIE) as the initiating event of the pathway; key events (KEs) as the events themselves, such as cellular-molecular interactions; and adverse outcome (AO), such as signaling transduction-induced toxicity, as adverse events.
View Article and Find Full Text PDFBenzyl salicylate is used as a fragrance ingredient and an ultraviolet light absorber, but its toxicity is unknown. Therefore, toxicity tests and hazard classification were conducted for screening assessment under the Japanese Chemical Substances Control Law. Benzyl salicylate was found to be non-genotoxic in vitro based on the chromosomal aberration test using Chinese hamster lung cells.
View Article and Find Full Text PDFAim: To investigate β-catenin (CTNNB1) signaling in cancer and stem cells, the gene expression and pathway were analyzed using bioinformatics.
Methods: The expression of the catenin β 1 () gene, which codes for β-catenin, was analyzed in mesenchymal stem cells (MSCs) and gastric cancer (GC) cells. Beta-catenin signaling and the mutation of related proteins were also analyzed using the cBioPortal for Cancer Genomics and HOMology modeling of Complex Structure (HOMCOS) databases.
World J Gastrointest Oncol
August 2016
Recent research has shown that the alteration of combinations in gene expression contributes to cellular phenotypic changes. Previously, it has been demonstrated that the combination of cadherin 1 and cadherin 2 expression can identify the diffuse-type and intestinal-type gastric cancers. Although the diffuse-type gastric cancer has been resistant to treatment, the precise mechanism and phenotypic involvement has not been revealed.
View Article and Find Full Text PDFStem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research.
View Article and Find Full Text PDFAll cells are derived from one cell, and the origin of different cell types is a subject of curiosity. Cells construct life through appropriately timed networks at each stage of development. Communication among cells and intracellular signaling are essential for cell differentiation and for life processes.
View Article and Find Full Text PDF