Dual mode detection can overcome the poor anti-interference ability of single-mode detection, and greatly improve the detection accuracy. Fluorescence/electrochemiluminescence (FL/ECL) dual mode detection combines the advantages of FL and ECL, and has a promising application in bioanalysis. Common FL/ECL dual mode detection used different signal probes.
View Article and Find Full Text PDFBackground: The near-infrared electrochemiluminescence (NIR-ECL) has excellent penetration and near zero background interference, and has shown unique advantages in clinical medicine and bioimaging. Among various types of NIR-ECL emitters, NIR organic dyes have arouse the concern of researchers due to their adjustable structure and diverse optical properties. However, the currently available NIR dyes usually have inherent self-quenching effect and poor photostability, so their ECL efficiency is low, and it is a great challenge to improve their ECL performance.
View Article and Find Full Text PDFFront Robot AI
November 2024
In the realm of precision cattle health monitoring, this paper introduces the development and evaluation of a novel wearable continuous health monitoring device designed for cattle. The device integrates a sustainable solar-powered module, real-time signal acquisition and processing, and a storage module within an animal ergonomically designed curved casing for non-invasive cattle health monitoring. The curvature of the casing is tailored to better fit the contours of the cattle's neck, significantly enhancing signal accuracy, particularly in temperature signal acquisition.
View Article and Find Full Text PDFBackground: Effective targets for systolic blood-pressure control in patients with type 2 diabetes are unclear.
Methods: We enrolled patients 50 years of age or older with type 2 diabetes, elevated systolic blood pressure, and an increased risk of cardiovascular disease at 145 clinical sites across China. Patients were randomly assigned to receive intensive treatment that targeted a systolic blood pressure of less than 120 mm Hg or standard treatment that targeted a systolic blood pressure of less than 140 mm Hg for up to 5 years.
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
In this work, up- and down-conversion dual-emission CDs without rare-earth (UD D-CDs) were synthesized using RhB and 1,4-Diaminoanthraquinone as precursors. The synthesized UD D-CDs exhibited dual emissions at 496 and 580 nm under 260 and 865 nm excitation, respectively. The fluorescence emission mechanism, including contributions from carbon nuclei, surface states, molecular states, and internal defect states, was discussed through the separation and purification of UD D-CDs.
View Article and Find Full Text PDFIntracellular detection and imaging of microRNAs (miRNAs) with low expression usually face the problem of unsatisfactory sensitivity. Herein, a novel dual-function DNA nanowire (DDN) with self-feedback amplification and efficient signal transduction was developed for the sensitive detection and intracellular imaging of microRNA-155 (miRNA-155). Target miRNA-155 triggered catalytic hairpin assembly (CHA) to generate plenty of double-stranded DNA (dsDNA), and a trigger primer exposed in dsDNA initiated a hybridization chain reaction (HCR) between four well-designed hairpins to produce DDN, which was encoded with massive target sequences and DNAzyme.
View Article and Find Full Text PDFIntroduction: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked hereditary disorder in southern China. However, the incidence rate of G6PD deficiency and the frequency of the most common gene variants vary widely. The purpose of this study was to investigate the prevalence, genotype, and phenotypic features of G6PD deficiency in neonates in Fujian province, southeastern China.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
Chloramphenicol (CAP) poses a threat to human health due to its toxicity and bioaccumulation, and it is very important to measure it accurately and sensitively. This work explored a host-guest recognition strategy to mediate dual aggregation-induced electrochemiluminescence (AIECL) of 1,1,2,2-tetrakis(4-(pyridin-4-yl) phenyl)-ethene (TPPE) for ratio detection of CAP, in which, cucurbit[8]uril (CB[8]) served as host to assemble guest TPPE. The resulting supramolecular complex CB[8]-TPPE exhibited excellent dual-AIECL-emission with signal strength approximately four times that of TPPE aggregates and black hole quencher-1 (BHQ1) could efficiently quench dual-AIECL signal.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the recent pandemic, has generated countless new variants with varying fitness. Mutations of the spike glycoprotein play a particularly vital role in shaping its evolutionary trajectory, as they have the capability to alter its infectivity and antigenicity. We present a time-resolved statistical method, Dynamic Expedition of Leading Mutations (deLemus), to analyze the evolutionary dynamics of the SARS-CoV-2 spike glycoprotein.
View Article and Find Full Text PDFWith the increasing prevalence of type 2 diabetes mellitus (T2DM), it has become critical to identify effective treatment strategies. In recent years, the novel oral hypoglycaemic drug Imeglimin has attracted much attention in the field of diabetes treatment. The mechanisms of its therapeutic action are complex and are not yet fully understood by current research.
View Article and Find Full Text PDFUrinary tract infections (UTIs), which can lead to pyelonephritis, urosepsis, and even death, are among the most prevalent infectious diseases worldwide, with a notable increase in treatment costs due to the emergence of drug-resistant pathogens. Current diagnostic strategies for UTIs, such as urine culture and flow cytometry, require time-consuming protocols and expensive equipment. We present here a machine learning-assisted colorimetric sensor array based on recognition of ligand-functionalized Fe single-atom nanozymes (SANs) for the identification of microorganisms at the order, genus, and species levels.
View Article and Find Full Text PDF