Publications by authors named "Shihoko Imamura"

Background: Non-cell-autonomous motor neuronal death is suggested in a mutant Cu/Zn superoxide dismutase 1 (mSOD1)-mediated amyotrophic lateral sclerosis (ALS) model, in which glial cells play significant roles in disease progression. Connexins (Cxs) form homotypic or heterotypic gap junctions (GJs) and allow direct intercellular communications among nervous tissue cells. The role of Cxs in motor neuron disease has never been investigated; therefore, we aimed to evaluate alterations of Cxs in mSOD1-transgenic (mSOD1-Tg) mice in comparison with their non-transgenic (non-Tg) littermates at the same ages.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) and neuromyelitis optica (NMO) occasionally have an extremely aggressive and debilitating disease course; however, its molecular basis is unknown. This study aimed to determine a relationship between connexin (Cx) pathology and disease aggressiveness in Asian patients with MS and NMO.

Methods/principal Findings: Samples included 11 autopsied cases with NMO and NMO spectrum disorder (NMOSD), six with MS, and 20 with other neurological diseases (OND).

View Article and Find Full Text PDF

Degranulation inhibitors in plants are widely used for prevention and treatment of immediate-type allergy. We previously isolated a new ellagic acid glucoside, okicamelliaside (OCS), from Camellia japonica leaves for use as a potent degranulation inhibitor. Crude extracts from leaves also suppressed allergic conjunctivitis in rats.

View Article and Find Full Text PDF

Okadaic acid and its analogs (OAs) responsible for diarrhetic shellfish poisoning (DSP) strongly inhibit protein phosphatase 2A (PP2A) and thus are quantifiable by measuring the extent of the enzyme inhibition. In this study, we evaluated the suitability of the catalytic subunit of recombinant human PP2A (rhPP2Ac) for use in a microplate OA assay. OA, dinophysistoxin-1(DTX1), and hydrolyzate of 7-O-palmitoyl-OA strongly inhibited rhPP2Ac activity with IC(50) values of 0.

View Article and Find Full Text PDF

Mitotic chromosomal assembly in vertebrates is regulated by condensin I and condensin II, which work cooperatively but have different chromosomal localization profiles and make distinct mechanistic contributions to this process. We show here that protein phosphatase 2A (PP2A), which interacts with condensin II but not condensin I, plays an essential role in targeting condensin II to chromosomes. Unexpectedly, our data indicate that PP2A acts as a recruiter protein rather than a catalytic enzyme to target condensin II to chromosomes.

View Article and Find Full Text PDF

Microcystins (MCs) are a group of cyclic heptapeptide hepatotoxins produced by Microcystis and several other genera of cyanobacteria. The representative MC, MC-LR, strongly inhibits protein phosphatase 2A (PP2A), while the inhibitory potencies of at least 60MC analogs characterized from bloom samples and cultured strains have not been fully elucidated. In this study, we determined the IC(50) values for 21MC analogs for inhibiting the recombinant PP2A catalytic subunit (rPP2Ac).

View Article and Find Full Text PDF

Worldwide blooms of toxic cyanobacteria (blue-green algae) commonly occur in freshwater, often in drinking water sources, necessitating routine monitoring of water quality. Microcystin-LR and related cyanobacterial toxins strongly inhibit protein phosphatase 2A (PP2A) and are therefore assayable by measuring the extent of PP2A inhibition. In this study, we evaluated the suitability of the catalytic subunit of recombinant PP2A (rPP2Ac) expressed with a baculovirus system for use in a microplate microcystin assay.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) is composed of structural (A), catalytic (C), and regulatory (B) subunits. The catalytic subunit (PP2A(C)) undergoes reversible carboxyl-methylation and -demethylation at its C-terminal leucine residue (Leu309), catalyzed by PP2A-methyltransferase (PMT) and PP2A methylesterase (PME-1), respectively. In this study, we observed that the activity of PP2A was largely unaffected by the addition of PME-1, and that the regulatory subunit (PR55/B) could bind demethylated PP2A(D).

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) contains a 36-kDa catalytic subunit (PP2Ac), a 65-kDa structural subunit (PR65/A), and a regulatory B subunit. The core enzyme consists of the structural and catalytic subunits. The catalytic subunit exists as two closely related isoforms, alpha and beta.

View Article and Find Full Text PDF