Electrochemical pretreatment (EPT) has shown to be superior in improving acidogenic co-fermentation (Co-AF) of waste activated sludge (WAS) and food waste (FW) for volatile fatty acids (VFAs). However, the influence of EPT electrode materials on the production of electrogenerated oxidants (such as singlet oxygen (O) and reactive chlorine species (RCS)), as well as their effects on properties of electrodes, the microbial community structure and functional enzymes remain unclear. Therefore, this study investigated the effects of various metal oxide coated electrodes (i.
View Article and Find Full Text PDFRecently, increasing attention is given on the resource and energy recovery (e.g. short-chain fatty acids (SCFAs) and phosphorus (P)) from waste active sludge (WAS) under the "Dual carbon goals".
View Article and Find Full Text PDFElectrochemical pretreatment (EPT) is an efficient technology to improve volatile fatty acids (VFAs) production during anaerobic fermentation of waste activated sludge (WAS). This study investigated the co-effects of different current intensities, electrolyte NaCl dosage and pretreatment time for promoting VFAs production. The results showed that it was considerably enhanced by 51.
View Article and Find Full Text PDFSci Total Environ
April 2020
Sediment containing numerous nutrients and pollutants has become an important consideration when treating black-odor water. Excessive activated sludge produced in wastewater treatment plants contains a large number of microorganisms, which is beneficial for removing organics and nutrients from the black-odor sediment. In this study, three types of sludge from a secondary sedimentation tank (SST), a digestion tank (DT), and an aerobic tank treating landfill leachate (AT_leachate) were used to treat black-odor sediment, respectively.
View Article and Find Full Text PDF