Publications by authors named "Shihan N Khan"

The WEE1 kinase family plays a crucial role in cell cycle regulation and DNA damage response pathways in malignant cells. Inhibition of WEE1 effectively overrides G2 cell cycle arrest and results in the accumulation of extensive DNA damage within dividing cells, potentiating mitotic catastrophe and cell death. As such, the development of WEE1 inhibitors as antineoplastic therapeutics has gained increasing interest in recent years.

View Article and Find Full Text PDF

Targeting different cell surface receptors with nanoparticle (NP)-based platforms can result in differential particle binding properties that may impact their localization, bioavailability, and, ultimately, the therapeutic efficacy of an encapsulated payload. Conventional assays comparing the efficacy of targeted NPs often do not adequately control for these differences in particle-receptor binding, potentially confounding their therapeutic readouts and possibly even limiting their experimental value. In this work, we characterize the conditions under which NPs loaded with Bruton's Tyrosine Kinase (BTK) inhibitor differentially suppress primary B cell activation when targeting either CD19 (internalizing) or B220 (noninternalizing) surface receptors.

View Article and Find Full Text PDF

Background: The development of respiratory infections secondary to Aspergillus spp. spores found ubiquitously in the ambient environment is uncommon in immunocompetent patients. Previous reports of invasive upper airway aspergillosis in immunocompetent patients have generally demonstrated the efficacy of treatment regimens utilizing antifungal agents in combination with periodic endoscopic debridement, with symptoms typically resolving within months of initiating therapy.

View Article and Find Full Text PDF