Publications by authors named "Shihai Deng"

The contribution of denitrifying anaerobic methane oxidation (DAMO) as a methane sink across different habitats, especially those affected by anthropogenic activities, remains unclear. Mining and industrial and domestic use of metals/metal-containing compounds can all cause metal contamination in freshwater ecosystems. Precipitation of metal ions often limits their toxicity to local microorganisms, yet microbial activity may also cause the redissolution of various precipitates.

View Article and Find Full Text PDF

Ferromanganese oxide (MFO) was first utilized to functionalize TiO and an MFO@TiO catalyst was developed for catalytic ozonation for rapid attack of pharmaceutical and personal care products (PPCPs) with adjusted reactive oxygen species (ROSs) composition and strengthened ROSs generation. Unlike AlO, which strongly relied on adsorption and was significantly influenced by MFO loading, synergistic catalytical effects of MFO and TiO were observed, and optimal MFO doping of 2 wt% and MFO@TiO dosage of 500 ppm were obtained for catalyzing ozonation. In ibuprofen (IBP) degradation, MFO@TiO-catalyzed ozonation (MFO@TiO/O) obtained 2.

View Article and Find Full Text PDF

Petrochemical wastewater contains inhibitory compounds such as aromatics that are toxic to microorganisms during biological treatment. The compact and layered structure and the high amount of extracellular polymeric substances (EPS) in aerobic granular sludge (AGS) can contribute to protecting microorganisms from the harsh environment. This study evaluated the changes in the granule properties, pollutants removal, microbial metabolic potential and molecular microbial characteristics of the AGS process for petrochemical wastewater treatment.

View Article and Find Full Text PDF

Newly arising concepts such as the circular economy and carbon neutrality motivate resource recovery from wastewater. This paper reviews and discusses state-of-the-art microbial electrochemical technologies (METs), specifically microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial recycling cells (MRCs), which enable energy generation and nutrient recovery from wastewater. Mechanisms, key factors, applications, and limitations are compared and discussed.

View Article and Find Full Text PDF

The occurrence of microplastic contaminants in food intended for human consumption has been widely explored. Yet, investigations on plastic and other particle debris in baby food packaging remain scarce to date. Our study shows the release of abundant micro-sized and submicron-sized particles, floccules (<300 μm), and fragments (1-50 μm) during the simulated use of commercially available single-use breastmilk storage bags.

View Article and Find Full Text PDF

Since the broke out of the novel coronavirus disease at the end of 2019, nearly 650 million people have been infected around the globe, and >6.6 million have died from this disease. The first wave of infections in mainland China had been effectively controlled within a short period, with no domestic cases of infection for 56 consecutive days from April 16, 2020.

View Article and Find Full Text PDF

The solar-driven evaporation technology provides a green alternative for solving water scarcity. However, it remains challenging to improve the steam conversion efficiency due to the difficulties in simultaneously coordinating light absorbance, water regulation, and thermal management for broadband solar evaporators. Here, an unconventional solar evaporative modulator material─ultra-interfacial adherent dimethyl sulfoxide polyvinyl alcohol (DMSO-PVA) hydrogel (DPH) was presented.

View Article and Find Full Text PDF

Microbial electrolysis cell (MEC) system is an environmentally friendly method for clean biohydrogen production from a wide range of biowastes owing to low greenhouse gas emissions. This approach has relatively higher yields and lower energy costs for biohydrogen production compared to conventional biological technologies and direct water electrolysis, respectively. However, biohydrogen production efficiency and operating costs of MEC still need further optimization to realize its large-scale application.

View Article and Find Full Text PDF

Micro-scale ZVI@GAC-based iron-carbon galvanic-cells (ZVI@GACs) were prepared with the Ca-Si-H/Ca-H formation process and first applied to initiate radical generation and coagulation processes in MBR for treating bio-refractory industrial wastewater (IWW). Batch tests revealed the HO production (0.19-0.

View Article and Find Full Text PDF

Dual selective pressure was applied as the driving condition to cultivate an enhanced aerobic granular sludge (AGS) with Fe(0)-based biochemical cycle galvanic-cells (BCGC) as the core. The BCGC-AGS coupled micro-electrolysis with synergistic autotrophic-heterotrophic denitrification to enhance nitrogen removal. COD and total nitrogen removal of 91.

View Article and Find Full Text PDF

A step-feed anoxic/oxic/anoxic/oxic (SF-A/O/A/O) was developed and successfully applied to full-scale coking wastewater treatment. The performance and microbial community were evaluated and systematically compared with the anoxic/oxic/oxic (A/O/O) process. SF-A/OA/O process exhibited efficient removal of COD, NH-N, TN, phenols, and cyanide with corresponding average effluent concentrations of 317.

View Article and Find Full Text PDF

A vegetated drainage ditch (VDD) system is an effective management practice for removing excess phosphorus (P) from agricultural runoff. However, the maximization of P removing efficiency by VDD remains a challenge. In this study, new VDDs with akadama clay barriers (particle size of clay: 1-6 mm; height of barrier: 5-15 cm and length of barrier: 10-90 cm) were designed in lab scale, and the mechanism of phosphate removal by akadama clay was investigated.

View Article and Find Full Text PDF

Though sulfamethoxazole (SMX) degradation at the low or medium concentration (SMX< 30 mg/L) has been reported in the microbial fuel cell (MFC), further exploration is still urgently required to investigate how the high concentration of SMX affect the anode biofilm formation. In this study, the degradation mechanism of SMX and the response of microbial community to SMX at different initial concentrations (0, 0.5, 5 and 50 mg/L) were investigated in MFCs.

View Article and Find Full Text PDF

Phenolic compounds are common ccontaminants in industrial effluents. In this study, a combined catalytic microbubble ozonation and biological process was developed and applied for efficient industrial phenolic wastewater (PWW) treatment. Catalytic activity of an iron-oxides (FeO) doped granular activated carbon (GAC) catalyst (FeO@GAC) in microbubble ozonation for PWW treatment was investigated.

View Article and Find Full Text PDF

Release of contaminants from sediments has been one of the main pollution sources causing eutrophication and malodorous black of ponds. In this study, an iron-rich substrate (IRS) was developed based on iron‑carbon micro-electrolysis and applied for simultaneous sediments and overlying water remediation. IRS obtained high ammonia and phosphate adsorption capacities (Langmuir isotherm) of 13.

View Article and Find Full Text PDF

The treatment of decentralized low-carbon greywater in rural area, particularly in cold weather, remains a challenge. Oxic/anoxic process and Fe/C micro-electrolysis were incorporated into vertical constructed wetland to develop ME-(O/A)CW for practical decentralized low-carbon greywater treatment. ME-(O/A)CW provided NH-N, TN, TP and COD removal of 94.

View Article and Find Full Text PDF

The treatment of sewage with high-nitrogen/-phosphorus and low-carbon remains a challenge. A novel iron-carbon galvanic cells strengthened anaerobic/anoxic/oxic process (Fe/C-A2O) was developed for high-nitrogen/-phosphorus and low-carbon sewage treatment. The cost-effective iron-scraps (ISs) was recycled as Fe(0)-source under the mediation of Fe/C galvanic cell reaction to develop effective Fe(0)-oxidizing autotrophic-denitrification and -dephosphorization.

View Article and Find Full Text PDF

Oxygen has not been purposely introduced to the autotrophic denitrification systems and simultaneous nitrification/autotrophic denitrification (SNAD) has not been proposed. In this study, oxygen was introduced into a micro-electrolysis-enhanced Fe-supported autotrophic denitrification (mFeAD) system. The nitrogen removal performance was investigated and the application potential of iron-scraps-supported simultaneous nitrification/mFeAD was evaluated.

View Article and Find Full Text PDF

Pharmaceutical residuals are increasingly detected in natural waters, which made great threat to the health of the public. This study evaluated the utility of the photo-Fenton ceramic membrane filtration toward the removal and degradation of sulfamethoxazole (SMX) as a model recalcitrant micropollutant. The photo-Fenton catalyst Goethite (α-FeOOH) was coated on planar ceramic membranes as we reported previously.

View Article and Find Full Text PDF

The bacterial-microalgal consortium has been investigated to anaerobic digestion effluent (ADE) treatment in the photobioreactor (PBR). However, the high concentrations of nutrients reduced the ADE treatment efficiency and the transformation of organic pollutants in PBR was still unclear. In this study, two-sequencing batch PBRs were operated with suspended Microcystis aeruginosa (M.

View Article and Find Full Text PDF

A process combining catalyzed Fe(0)-carbon microelectrolysis (IC-ME) with activated carbon (AC) adsorption was developed for advanced reclaimed water treatment. Simultaneous nitrate reduction and chemical oxygen demand (COD) removal were achieved, and the effects of composite catalyst (CC) addition, AC addition, and initial pH were investigated. The reaction kinetics and reaction mechanisms were calculated and analyzed.

View Article and Find Full Text PDF

Combined heterotrophic and autotrophic denitrification (HAD) is a sustainable and practical method for removing nitrate from organic-limited wastewater. However, the active microorganisms responsible for denitrification in wastewater treatment have not been clearly identified. In this study, a combined microelectrolysis, heterotrophic, and autotrophic denitrification (CEHAD) process was established.

View Article and Find Full Text PDF

Nitrogen bioremediation in organic insufficient wastewater generally requires an extra carbon source. In this study, nitrate-contaminated wastewater was treated effectively through simultaneous autotrophic and heterotrophic denitrification based on micro-electrolysis carriers (MECs) and retinervus luffae fructus (RLF), respectively. The average nitrate and total nitrogen removal rates reached 96.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the phosphorus adsorption abilities of an iron-rich substrate made from iron scraps and activated carbon, using a method called iron-carbon micro-electrolysis (IC-ME).
  • Results indicated that phosphorus was effectively precipitated by iron dissolved during galvanic reactions, with pH levels influencing this process, particularly suppressing it when exceeding 8.90.
  • The iron-rich substrate showed a high phosphorus adsorption capacity with minimal decline after multiple rounds of use, highlighting its strong potential as a substrate in constructed wetlands.
View Article and Find Full Text PDF

A combined process between micro-electrolysis and biological denitrification (MEBD) using iron scraps and an activated carbon-based micro-electrolysis carrier was developed for nitrogen removal under a microaerobic condition. The process provided NH4(+)-N and total nitrogen (TN) removal efficiencies of 92.6% and 95.

View Article and Find Full Text PDF