Publications by authors named "Shih-Ting Hong"

The presence of anti-polyethylene glycol (anti-PEG) antibodies can hinder the therapeutic efficacy of PEGylated drugs. With the widespread use of a PEGylated coronavirus disease 2019 (COVID-19) messenger RNA vaccine (Comirnaty), the impact of pre-existing anti-PEG antibodies on vaccine potency has become a point of debate. To investigate this, we established mouse models with pre-existing anti-PEG antibodies and divided them into 3 groups: group 1 with anti-PEG immunoglobulin G + immunoglobulin M concentrations of 0.

View Article and Find Full Text PDF

Spatial hindrance-based pro-antibodies (pro-Abs) are engineered antibodies to reduce monoclonal antibodies' (mAbs) on-target toxicity using universal designed blocking segments that mask mAb antigen-binding sites through spatial hindrance. By linking through protease substrates and linkers, these blocking segments can be removed site-specifically. Although many types of blocking segments have been developed, such as coiled-coil and hinge-based Ab locks, the molecular structure of the pro-Ab, particularly the region showing how the blocking fragment blocks the mAb, has not been elucidated by X-ray crystallography or cryo-EM.

View Article and Find Full Text PDF

Background: Humanization of mouse monoclonal antibodies (mAbs) is crucial for reducing their immunogenicity in humans. However, humanized mAbs often lose their binding affinities. Therefore, an in silico humanization method that can prevent the loss of the binding affinity of mAbs is needed.

View Article and Find Full Text PDF

The on-target toxicity of monoclonal antibodies (Abs) is mainly due to the fact that Abs cannot distinguish target antigens (Ags) expressed in disease regions from those in normal tissues during systemic administration. In order to overcome this issue, we "copied" an autologous Ab hinge as an "Ab lock" and "pasted" it on the binding site of the Ab by connecting a protease substrate and linker in between to generate a pro-Ab, which can be specifically activated in the disease region to enhance Ab selectivity and reduce side effects. Previously, we reported that 70% of pro-Abs can achieve more than 100-fold blocking ability compared to the parental Abs.

View Article and Find Full Text PDF

Canakinumab is a fully human monoclonal antibody that specifically neutralizes human interleukin (IL)-1β and has been approved by the US Food and Drug Administration for treating different types of autoinflammatory disorders such as cryopyrin-associated periodic syndrome, tumor necrosis factor receptor-associated periodic syndrome and systemic juvenile idiopathic arthritis. However, long-term systemic neutralization of IL-1β by Canakinumab may cause severe adverse events such as serious upper respiratory tract infections and inflammation, thereby decreasing the quality of life of patients. Here, we used an IgG1 hinge as an Ab lock to cover the IL-1β-binding site of Canakinumab by linking with matrix metalloprotease 9 (MMP-9) substrate to generate pro-Canakinumab that can be specifically activated in the inflamed regions in autoinflammatory diseases to enhance the selectivity and safety of treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Humira is a monoclonal antibody that targets and inhibits TNF alpha, a key player in inflammation, but its effectiveness can be reduced when it gets internalized and processed in cells.
  • Researchers engineered a modified version of Humira (W1-Humira) to improve its ability to recycle back to the bloodstream by ensuring it dissociates from TNF alpha under acidic conditions within cells.
  • The study utilized advanced computational methods to demonstrate that W1-Humira has a pH-sensitive binding ability, showing it may help improve antibody drug design in the future.
View Article and Find Full Text PDF