Publications by authors named "Shih-Peng Chan"

DDX3 is a DEAD-box RNA helicase that plays multiple roles in RNA metabolism, including translation. We previously reported that DDX3 is required for translation of PACT, a binding partner of Dicer, suggesting a role for DDX3 in microRNA (miRNA) biogenesis and RNA interference (RNAi). Emerging evidence suggests that DDX3 plays a vital role in tumorigenesis and cancer progression, however, its underlying mechanism is still not fully understood.

View Article and Find Full Text PDF

The RNA-binding protein LIN28B represses the biogenesis of the tumor suppressor let-7. The LIN28B/let-7 axis regulates cell differentiation and is associated with various cancers. The RNA-binding protein Q (hnRNP Q) or SYNCRIP (Synaptotagmin Binding Cytoplasmic RNA Interacting Protein) has been implicated in mRNA splicing, mRNA transport, translation, and miRNAs biogenesis as well as metabolism in cancer.

View Article and Find Full Text PDF

Axon and dendrite development require the cooperation of actin and microtubule cytoskeletons. Microtubules form a well-organized network to direct polarized trafficking and support neuronal processes formation with distinct actin structures. However, it is largely unknown how cytoskeleton regulators differentially regulate microtubule organization in axon and dendrite development.

View Article and Find Full Text PDF

The areas where dengue virus (DENV) is endemic have expanded rapidly, driven in part by the global spread of Aedes species, which act as disease vectors. DENV replicates in the mosquito midgut and is disseminated to the mosquito's salivary glands for amplification. Thus, blocking virus infection or replication in the tissues of the mosquito may be a viable strategy for reducing the incidence of DENV transmission to humans.

View Article and Find Full Text PDF

Caenorhabditis elegans benefits from a large set of tools for genome manipulation. Yet, the precise single-copy insertion of very large DNA constructs (>10 kb) and the generation of inversions are still challenging. Here, we adapted the phiC31 integrase system for C.

View Article and Find Full Text PDF

Increased levels of dysfunctional mitochondria within skeletal muscle are correlated with numerous age-related physiopathological conditions. Improving our understanding of the links between mitochondrial function and muscle proteostasis, and the role played by individual genes and regulatory networks, is essential to develop treatments for these conditions. One potential player is the mitochondrial outer membrane protein Fis1, a crucial fission factor heavily involved in mitochondrial dynamics in yeast but with an unknown role in higher-order organisms.

View Article and Find Full Text PDF

To maintain a particular cell fate, a unique set of genes should be expressed while another set is repressed. One way to repress gene expression is through Polycomb group (PcG) proteins that compact chromatin into a silent configuration. In addition to cell fate maintenance, PcG proteins also maintain normal cell physiology, for example cell cycle.

View Article and Find Full Text PDF

Exploiting a C. elegans mutant (ncl-1) exhibiting nucleolar abnormalities, we recently identified the let-7/ncl-1/fib-1 genetic cascade underlying proper rRNA abundance and nucleolar size. These 3 factors, let-7 (a miRNA), NCL-1 (a member of the TRIM-NHL family), and fibrillarin (a nucleolar methyltransferase), are evolutionarily conserved across metazoans.

View Article and Find Full Text PDF

Primary microRNAs (pri-miRNAs) are cleaved by the nuclear RNase III Drosha to produce hairpin-shaped precursor miRNAs (pre-miRNAs). In humans, this process is known to be facilitated by the DEAD-box helicases p68 (DDX5) and p72 (DDX17). In this study, we performed a candidate-based RNAi screen in C.

View Article and Find Full Text PDF

Ribosome biogenesis takes place in the nucleolus, the size of which is often coordinated with cell growth and development. However, how metazoans control nucleolar size remains largely unknown. Caenorhabditis elegans provides a good model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger nucleoli than wild-type worms.

View Article and Find Full Text PDF

Previously, we showed that BCAS2 is essential for Drosophila viability and functions in pre-mRNA splicing. In this study, we provide strong evidence that BCAS2 regulates the activity of Delta-Notch signaling via Delta pre-mRNA splicing. Depletion of dBCAS2 reduces Delta mRNA expression and leads to accumulation of Delta pre-mRNA, resulting in diminished transcriptions of Delta-Notch signaling target genes, such as cut and E(spl)m8.

View Article and Find Full Text PDF

The let-7 microRNA (miRNA) regulates cell cycle exit and terminal differentiation in the C. elegans heterochronic gene pathway. Low expression of let-7 results in retarded vulva and hypodermal cell development in C.

View Article and Find Full Text PDF
Article Synopsis
  • MicroRNAs (miRNAs) are small RNA molecules that play a crucial role in regulating cellular processes across various organisms, first discovered in the model organism C. elegans.
  • These miRNAs are initially produced as long primary transcripts, which are processed into shorter forms by the enzymes Drosha and Dicer, eventually resulting in mature miRNAs that interact with target mRNAs to control gene expression.
  • The chapter focuses on current research methods used in C. elegans to explore miRNA biogenesis, small RNA populations, and the mechanisms of miRNA-protein interactions and target regulation.
View Article and Find Full Text PDF

The let-7 microRNA (miRNA) regulates developmental timing at the larval-to-adult transition in Caenorhabditis elegans. Dysregulation of let-7 results in irregular hypodermal and vulval development. Disrupted let-7 function is also a feature of human lung cancer.

View Article and Find Full Text PDF

Little is known about the protein complexes required for microRNA formation and function. Here we used native gel electrophoresis to identify miRNA ribonucleoprotein complexes (miRNPs) in Caenorhabditis elegans. Our data reveal multiple distinct miRNPs that assemble on the let-7 miRNA in vitro.

View Article and Find Full Text PDF

Mirtrons are short hairpin introns recently found in flies and nematodes that provide an alternative source for animal microRNA biogenesis and use the splicing machinery to bypass Drosha cleavage in initial maturation. The presence of mirtrons outside of invertebrates was not previously known. In the October 26 issue of Molecular Cell, Berezikov et al.

View Article and Find Full Text PDF

Cytoplasmic processing bodies, or P-bodies, contain a high concentration of enzymes and factors required for mRNA turnover and translational repression. Recent studies provide evidence that the mRNAs silenced by miRNAs are localized to P-bodies for storage or degradation, perhaps in adjacent subcompartments. mRNP remodeling, potentially induced by miRISC or RNA helicase activity, may cause the modification of the translation initiation complex at the 5' end of mRNA, following translational repression and localization to P-bodies.

View Article and Find Full Text PDF

The Prp19-associated complex, consisting of at least eight protein components, is involved in spliceosome activation by specifying the interaction of U5 and U6 with pre-mRNA for their stable association with the spliceosome after U4 dissociation. We show here that yeast cells depleted of one or two of the Prp19-associated components, accumulate the free form of U4. In NTC25-deleted cells, the level of U6 was also reduced.

View Article and Find Full Text PDF

Activation of the spliceosome involves a major structural change in the spliceosome, including release of U1 and U4 small nuclear ribonucleoprotein particles and the addition of a large protein complex, the Prp19-associated complex. We previously showed that the Prp19-associated complex is required for stable association of U5 and U6 with the spliceosome after U4 is released. Changes within the spliceosome upon binding of the Prp19-associated complex include remodeling of the U6/5' splice site interaction and destabilization of Lsm proteins to allow further interaction of U6 with the intron sequence.

View Article and Find Full Text PDF

During spliceosome activation, a large structural rearrangement occurs that involves the release of two small nuclear RNAs, U1 and U4, and the addition of a protein complex associated with Prp19p. We show here that the Prp19p-associated complex is required for stable association of U5 and U6 with the spliceosome after U4 is dissociated. Ultraviolet crosslinking analysis revealed the existence of two modes of base pairing between U6 and the 5' splice site, as well as a switch of such base pairing from one to the other that required the Prp19p-associated complex during spliceosome activation.

View Article and Find Full Text PDF