Publications by authors named "Shih-Han Lo"

Five emitters CzAZB, tBuCzAZB, tmCzAZB, dmAcAZB, and PxzAZB based on dibenzo-1,4-azaborine as the electron acceptors and two identical amine groups as the donors were designed and synthesized. The dihedral angles between the planes of dibenzo-1,4-azaborine acceptors and amine-based donors greatly affect the thermally activated delayed fluorescence (TADF) property of these materials. A simple concept "steric switching" is introduced to predict whether the emitter possesses TADF property.

View Article and Find Full Text PDF

SnTe is a potentially attractive thermoelectric because it is the lead-free rock-salt analogue of PbTe. However, SnTe is a poor thermoelectric material because of its high hole concentration arising from inherent Sn vacancies in the lattice and its very high electrical and thermal conductivity. In this study, we demonstrate that SnTe-based materials can be controlled to become excellent thermoelectrics for power generation via the successful application of several key concepts that obviate the well-known disadvantages of SnTe.

View Article and Find Full Text PDF

Increasing the conversion efficiency of thermoelectric materials is a key scientific driver behind a worldwide effort to enable heat to electricity power generation at competitive cost. Here we report an increased performance for antimony-doped lead selenide with a thermoelectric figure of merit of ~1.5 at 800 K.

View Article and Find Full Text PDF

The thermoelectric effect enables direct and reversible conversion between thermal and electrical energy, and provides a viable route for power generation from waste heat. The efficiency of thermoelectric materials is dictated by the dimensionless figure of merit, ZT (where Z is the figure of merit and T is absolute temperature), which governs the Carnot efficiency for heat conversion. Enhancements above the generally high threshold value of 2.

View Article and Find Full Text PDF

Lead chalcogenide thermoelectric systems have been shown to reach record high figure of merit values via modification of the band structure to increase the power factor or via nanostructuring to reduce the thermal conductivity. Recently, (PbTe)1-x(PbSe)x was reported to reach high power factors via a delayed onset of interband crossing. Conversely, the (PbTe)1-x(PbS)x was reported to achieve low thermal conductivities arising from extensive nanostructuring.

View Article and Find Full Text PDF

Previous efforts to enhance thermoelectric performance have primarily focused on reduction in lattice thermal conductivity caused by broad-based phonon scattering across multiple length scales. Herein, we demonstrate a design strategy which provides for simultaneous improvement of electrical and thermal properties of p-type PbSe and leads to ZT ~ 1.6 at 923 K, the highest ever reported for a tellurium-free chalcogenide.

View Article and Find Full Text PDF

We present a systematic study of the characterization and thermoelectric properties of nanostructured Na-doped PbSe embedded with 1-4% MSe (M = Ca, Sr, Ba) phases as endotaxial inclusions. The samples were powder-processed by the spark plasma sintering technique, which introduces mesoscale-structured grains. The hierarchical architectures on the atomic scale (Na and M solid solution), nanoscale (MSe nanoprecipitates), and mesoscale (grains) were confirmed by transmission electron microscopy.

View Article and Find Full Text PDF

Lead sulfide, a compound consisting of elements with high natural abundance, can be converted into an excellent thermoelectric material. We report extensive doping studies, which show that the power factor maximum for pure n-type PbS can be raised substantially to ~12 μW cm(-1) K(-2) at >723 K using 1.0 mol % PbCl(2) as the electron donor dopant.

View Article and Find Full Text PDF