Publications by authors named "Shih-Feng Hsu"

Unlabelled: Influenza A virus (IAV) undergoes RNA transcription by a unique capped-mRNA-dependent transcription, which is carried out by the viral RNA-dependent RNA polymerase (RdRp), consisting of the viral PA, PB1, and PB2 proteins. However, how the viral RdRp utilizes cellular factors for virus transcription is not clear. Previously, we conducted a genome-wide pooled short hairpin RNA (shRNA) screen to identify host factors important for influenza A virus replication.

View Article and Find Full Text PDF

Unlabelled: Influenza A virus (IAV) depends on cellular factors to complete its replication cycle; thus, investigation of the factors utilized by IAV may facilitate antiviral drug development. To this end, a cellular transcriptional repressor, DR1, was identified from a genome-wide RNA interference (RNAi) screen. Knockdown (KD) of DR1 resulted in reductions of viral RNA and protein production, demonstrating that DR1 acts as a positive host factor in IAV replication.

View Article and Find Full Text PDF

In Arabidopsis thaliana, heat shock factor binding protein (AtHSBP) is a negative regulator of the heat shock response (HSR), and defective AtHSBP leads to seed abortion. We found that the wild-type and AtHSBP-knockout plants did not differ in ovule phenotypes at flower position 3, which indicates that the seed abortion occurs after fertilization and during embryogenesis. The conserved residues of the hydrophobic heptad repeat (HR) domains in AtHSBP were mutated and examined for their subcellular localization and interacting ability with heat shock factors (AtHSFs).

View Article and Find Full Text PDF

Synthesis of heat shock proteins (HSPs) in response to heat shock (HS) is essential for thermotolerance. The effect of a Ca(2+) chelator, EGTA, was investigated before a lethal HS treatment in soybean (Glycine max) seedlings with acquired thermotolerance induced by preheating. Such seedlings became non-thermotolerant with EGTA treatment.

View Article and Find Full Text PDF

Heat shock response (HSR) is a universal mechanism in all organisms. It is under tight regulation by heat shock factors (HSFs) and heat shock proteins (HSPs) after heat shock (HS) to prevent stress damage. On the attenuation of HSR, HSP70 and HSF Binding Protein1 (HSBP1) interact with HSF1 and thus dissociate trimeric HSF1 into an inert monomeric form in humans.

View Article and Find Full Text PDF