Electrospun drug-eluting fibers have demonstrated potentials in topical drug delivery applications, where drug releases can be modulated by polymer fiber compositions. In this study, blend fibers of polycaprolactone (PCL) and polyethylene oxide (PEO) at various compositions were electrospun from 10 wt% of polymer solutions to encapsulate a model drug of ibuprofen (IBP). The results showed that the average polymer solution viscosities determined the electrospinning parameters and the resulting average fiber diameters.
View Article and Find Full Text PDFFrequent change of wound dressings introduces wound inflammation and infections. In this study, we electrospun phenytoin (PHT) loaded ethyl cellulose (EC) microfibers and solvent cast tetracycline hydrochloride (TCH) loaded carboxymethyl cellulose (CMC) films with the aim to demonstrate tailorable in vitro drug release behaviors suitable for long-term use of wound dressings. Results from tensile testing showed a significant decrease in average elastic moduli from 8.
View Article and Find Full Text PDFElectrospun microfibers are emerging as one of the advanced wound dressing materials for acute and/or chronic wounds, especially with their ability to carry drugs and excipients at a high loading while being able to deliver them in a controlled manner. Various attempts were made to include excipients in electrospun microfibers as wound dressing materials, and one of them is poloxamer, an amphiphilic polymer that exhibits wound debridement characteristics. In this study, we formulated two types of poloxamers (i.
View Article and Find Full Text PDFElectrospinning is a fiber manufacturing technique with the possibility of encapsulating high levels of small molecule drugs while providing controlled release rates. In this study, electrospun blend fibers were produced from polyethylene oxide (PEO) and ethyl cellulose (EC) at various compositions to encapsulate a poorly water-soluble drug of ibuprofen (IBP) at 30% loading. Microscopic evaluation showed smooth and defect-free fiber morphologies for blank and IBP-loaded PEO/EC fibers.
View Article and Find Full Text PDFChitosan, a natural-occurring biopolymer, is biocompatible to tissues with excellent antibacterial and hemostatic properties, which makes it a great candidate among wound dressing materials. In this paper, electrospun fiber-based wound dressings from blend chitosan and/or polyethylene oxide (PEO) and/or polyvinyl alcohol (PVA) fibers were reviewed. The incorporation of these water-soluble copolymers allows the entanglement of the rigid chitosan molecular chains during electrospinning leading to the production of continuous nonwoven fibers having average diameters ranging from several tenths to hundredths of nanometers.
View Article and Find Full Text PDFBiomed J Sci Tech Res
December 2020
Coronary thrombosis is one of the leading causes of mortality and morbidity in cardiovascular diseases, and patients who received vascular stent treatments are likely to suffer from restenosis due to tissue damage from stenting procedures (extrinsic pathway) and/or presence of unregulated factor XII (intrinsic pathway). Regardless of the pathway, coagulation factors and exposed collagen activate the G-protein-coupled receptors located at the plasma membrane of the resting platelets resulting in the change of their shapes with protrusions of filopodia and lamellipodia for surface adhesion. In this mini review, we discussed the mechanisms involved in platelet activation, adhesion, and aggregation.
View Article and Find Full Text PDFHemocompatibility remains a challenge for injectable and/or implantable medical devices, and thromboresistant coatings appear to be one of the most attractive methods to down-regulate the unwanted enzymatic reactions that promote the formation of blood clots. Among all polymeric materials, polyurethanes (PUs) are a class of biomaterials with excellent biocompatibility and bioinertness that are suitable for the use of thromboresistant coatings. In this work, we investigated the thermal and physico-mechanical behaviors of ester-based and ether-based PU films for potential uses in thromboresistant coatings.
View Article and Find Full Text PDFStem cell therapy has emerged as one of the topics in tissue engineering where undifferentiated and multipotent cells are strategically placed/ injected in tissue structure for cell regeneration. Over the years, stem cells have shown promising results in skin repairs for non-healing and/or chronic wounds. The addition of the stem cells around the wound site promotes signaling pathways for growth factors that regulate tissue reconstruction.
View Article and Find Full Text PDFArch Biomed Eng Biotechnol
March 2019
Injectable and/or Implantable medical devices are widely used in the treatment of diseases. Among them, vascular stents provide the medical solution to treat blood clotting. However, traditional metallic stents, even with current improvements in anticoagulation properties, have potential drawbacks in local inflammation when first implanted into the body and undesirable protein adsorption and cell adhesion after a prolonged period of time in the body.
View Article and Find Full Text PDFAdvances in nanotechnology and nanomaterials have enabled the development of functional biomaterials with surface properties that reduce the rate of the device rejection in injectable and implantable biomaterials. In addition, the surface of biomaterials can be functionalized with macromolecules for stimuli-responsive purposes to improve the efficacy and effectiveness in drug release applications. Furthermore, macromolecule-grafted surfaces exhibit a hierarchical nanostructure that mimics nanotextured surfaces for the promotion of cellular responses in tissue engineering.
View Article and Find Full Text PDFWound healing is a complex tissue regeneration process that promotes the growth of new tissue to provide the body with the necessary barrier from the outside environment. In the class of non-healing wounds, diabetic wounds, and ulcers, dressing materials that are available clinically (e.g.
View Article and Find Full Text PDFUnlabelled: To offer an ideal hospitable environment for corneal keratocyte growth, the carrier materials can be functionalized with incorporation of signaling molecules to regulate cell biological events. This study reports, for the first time, the development of gelatin/ascorbic acid (AA) cryogels for keratocyte carriers in vitro and in vivo. The cryogel samples were fabricated by blending of gelatin with varying amounts of AA (0-300 mg) and carbodiimide cross-linking via cryogelation technique.
View Article and Find Full Text PDFCultivated cell spheroid transplantation is widely studied as a means of facilitating tissue regeneration. Chitosan biomaterial has been shown to promote keratocyte aggregation and multicellular spheroid formation. This study provides further evidence on application of bioengineered keratocyte spheroids for corneal stromal tissue engineering.
View Article and Find Full Text PDFTo alleviate oxidative stress-induced ocular hypertension, grafting of antioxidant molecules to drug carriers enables a dual-function mechanism to effectively treat glaucomatous intraocular pressure (IOP) dysregulation. Providing potential application for intracameral administration of antiglaucoma medications, this study, for the first time, aims to examine in vivo pharmacological efficacy of pilocarpine-loaded antioxidant-functionalized biodegradable thermogels in glaucomatous rabbits. A series of gallic acid (GA)-grafted gelatin-g-poly(N-isopropylacrylamide) (GN) polymers were synthesized via redox reactions at 20-50 °C.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2017
Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2017
Electrospun nanofibers have the potential to achieve high drug loading and the ability to sustain drug release. Mechanical properties of the drug-incorporated fibers suggest the importance of drug-polymer interactions. In this study, we investigated the mechanical properties of electrospun polycaprolactone (PCL) and poly (D,L-lactic-co-glycolic) acid (PLGA) fibers at various blend ratios in the presence and absence of a small molecule hydrophilic drug, tenofovir (TFV).
View Article and Find Full Text PDFTo overcome the drawbacks associated with conventional antiglaucoma eye drops, this work demonstrated the feasibility of an effective alternative strategy to administer pilocarpine directly via intracameral injections of drug-containing biodegradable in situ gelling GN copolymers composed of gelatin and poly(N-isopropylacrylamide). Specifically, this study aims to understand the importance of Bloom number of gelatin, a physicochemical parameter, to the development of GN carriers for intracameral drug delivery in glaucoma therapy. Our results showed that both imino acid and triple-helix contents increased with increasing Bloom index from 75-100 to 300.
View Article and Find Full Text PDFUnlabelled: Functionalization of therapeutic carrier biomaterials can potentially provide additional benefits in drug delivery for disease treatment. Given that this modification determines final therapeutic efficacy of drug carriers, here, we investigate systematically the role of grafting amount of antioxidant gallic acid (GA) onto GN in situ gelling copolymers made of biodegradable gelatin and thermo-responsive poly(N-isopropylacrylamide) for intracameral delivery of pilocarpine in antiglaucoma treatment. As expected, increasing redox reaction time increased total antioxidant activities and free radical scavenging abilities of synthesized carrier biomaterials.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2016
This study reports, for the first time, the regulation of corneal keratocyte adhesion, spreading, morphology, and integrin gene expression on chitosan coating due to the effects of deacetylation. The degree of deacetylation (DD) in chitosan materials was confirmed by elemental analysis, gel permeation chromatography, and Fourier transform infrared spectroscopy. In this study, chitosan samples with the same molecular weight level but varying DD (74.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2016
Electrospun fibers show potential as a topical delivery system for vaginal microbicides. Previous reports have demonstrated delivery of anti-HIV and anti-STI (sexually transmitted infection) agents from fibers formulated using hydrophilic, hydrophobic, or pH-responsive polymers that result in rapid, prolonged, or stimuli-responsive release, respectively. However, coaxial electrospun fibers have yet to be evaluated as a highly tunable microbicide delivery vehicle.
View Article and Find Full Text PDFFabrication of the cell spheroids from corneal keratocytes has important implications to the advance in tissue engineering while stimulation from the interface of a biopolymer coating has the ability to modulate this event. This study aims to investigate the dependence of keratocyte migration, proliferation, and differentiation on the surface roughness/stiffness of the chitosan coatings through modifications by degree of deacetylation (DD). After a series of deacetylation process, chitosan coatings with increasing DD exhibited significantly decreased surface roughness and increased surface stiffness.
View Article and Find Full Text PDFJ Control Release
December 2015
Electrospun drug-eluting fibers are emerging as a novel dosage form for multipurpose prevention against sexually transmitted infections, including HIV, and unintended pregnancy. Previous work from our lab and others show the versatility of this platform to deliver large doses of physico-chemically diverse agents. However, there is still an unmet need to develop practical fiber formulations for water-soluble small molecule drugs needed at high dosing due to intrinsic low potency or desire for sustained prevention.
View Article and Find Full Text PDF