Publications by authors named "Shih-Chii Liu"

Sweat secreted by the human eccrine sweat glands can provide valuable biomarker information during exercise. Real-time non-invasive biomarker recordings are therefore useful for evaluating the physiological conditions of an athlete such as their hydration status during endurance exercise. This work describes a wearable sweat biomonitoring patch incorporating printed electrochemical sensors into a plastic microfluidic sweat collector and data analysis that shows the real-time recorded sweat biomarkers can be used to predict a physiological biomarker.

View Article and Find Full Text PDF

Improper hydration routines can reduce athletic performance. Recent studies show that data from noninvasive biomarker recordings can help to evaluate the hydration status of subjects during endurance exercise. These studies are usually carried out on multiple subjects.

View Article and Find Full Text PDF

Long short-term memory (LSTM) recurrent networks are frequently used for tasks involving time-sequential data, such as speech recognition. Unlike previous LSTM accelerators that either exploit spatial weight sparsity or temporal activation sparsity, this article proposes a new accelerator called "Spartus" that exploits spatio-temporal sparsity to achieve ultralow latency inference. Spatial sparsity is induced using a new column-balanced targeted dropout (CBTD) structured pruning method, producing structured sparse weight matrices for a balanced workload.

View Article and Find Full Text PDF

Liquid analysis is key to track conformity with the strict process quality standards of sectors like food, beverage, and chemical manufacturing. In order to analyse product qualities online and at the very point of interest, automated monitoring systems must satisfy strong requirements in terms of miniaturization, energy autonomy, and real time operation. Toward this goal, we present the first implementation of artificial taste running on neuromorphic hardware for continuous edge monitoring applications.

View Article and Find Full Text PDF

Hearing-impaired people often struggle to follow the speech stream of an individual talker in noisy environments. Recent studies show that the brain tracks attended speech and that the attended talker can be decoded from neural data on a single-trial level. This raises the possibility of "neuro-steered" hearing devices in which the brain-decoded intention of a hearing-impaired listener is used to enhance the voice of the attended speaker from a speech separation front-end.

View Article and Find Full Text PDF

It is well known in machine learning that models trained on a training set generated by a probability distribution function perform far worse on test sets generated by a different probability distribution function. In the limit, it is feasible that a continuum of probability distribution functions might have generated the observed test set data; a desirable property of a learned model in that case is its ability to describe most of the probability distribution functions from the continuum equally well. This requirement naturally leads to sampling methods from the continuum of probability distribution functions that lead to the construction of optimal training sets.

View Article and Find Full Text PDF

Convolutional neural networks (CNNs) have become the dominant neural network architecture for solving many state-of-the-art (SOA) visual processing tasks. Even though graphical processing units are most often used in training and deploying CNNs, their power efficiency is less than 10 GOp/s/W for single-frame runtime inference. We propose a flexible and efficient CNN accelerator architecture called NullHop that implements SOA CNNs useful for low-power and low-latency application scenarios.

View Article and Find Full Text PDF

This paper presents a real-time, low-complexity neuromorphic speech recognition system using a spiking silicon cochlea, a feature extraction module and a population encoding method based Neural Engineering Framework (NEF)/Extreme Learning Machine (ELM) classifier IC. Several feature extraction methods with varying memory and computational complexity are presented along with their corresponding classification accuracies. On the N-TIDIGITS18 dataset, we show that a fixed bin size based feature extraction method that votes across both time and spike count features can achieve an accuracy of 95% in software similar to previously report methods that use fixed number of bins per sample while using ~3× less energy and ~25× less memory for feature extraction (~1.

View Article and Find Full Text PDF

Event-driven neuromorphic spiking sensors such as the silicon retina and the silicon cochlea encode the external sensory stimuli as asynchronous streams of spikes across different channels or pixels. Combining state-of-art deep neural networks with the asynchronous outputs of these sensors has produced encouraging results on some datasets but remains challenging. While the lack of effective spiking networks to process the spike streams is one reason, the other reason is that the pre-processing methods required to convert the spike streams to frame-based features needed for the deep networks still require further investigation.

View Article and Find Full Text PDF

neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules.

View Article and Find Full Text PDF

Spiking cochlea models describe the analog processing and spike generation process within the biological cochlea. Reconstructing the audio input from the artificial cochlea spikes is therefore useful for understanding the fidelity of the information preserved in the spikes. The reconstruction process is challenging particularly for spikes from the mixed signal (analog/digital) integrated circuit (IC) cochleas because of multiple non-linearities in the model and the additional variance caused by random transistor mismatch.

View Article and Find Full Text PDF

This letter addresses the problem of separating two speakers from a single microphone recording. Three linear methods are tested for source separation, all of which operate directly on sound spectrograms: (1) eigenmode analysis of covariance difference to identify spectro-temporal features associated with large variance for one source and small variance for the other source; (2) maximum likelihood demixing in which the mixture is modeled as the sum of two gaussian signals and maximum likelihood is used to identify the most likely sources; and (3) suppression-regression, in which autoregressive models are trained to reproduce one source and suppress the other. These linear approaches are tested on the problem of separating a known male from a known female speaker.

View Article and Find Full Text PDF

Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs) are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks require vast computing resources, leading to high power requirements and communication overheads. The on-going work on design and construction of spike-based hardware platforms offers an alternative for running deep neural networks with significantly lower power consumption, but has to overcome hardware limitations in terms of noise and limited weight precision, as well as noise inherent in the sensor signal.

View Article and Find Full Text PDF

Spike-based neuromorphic sensors such as retinas and cochleas, change the way in which the world is sampled. Instead of producing data sampled at a constant rate, these sensors output spikes that are asynchronous and event driven. The event-based nature of neuromorphic sensors implies a complete paradigm shift in current perception algorithms toward those that emphasize the importance of precise timing.

View Article and Find Full Text PDF

Optical flow sensors have been a long running theme in neuromorphic vision sensors which include circuits that implement the local background intensity adaptation mechanism seen in biological retinas. This paper reports a bio-inspired optical motion sensor aimed towards miniature robotic and aerial platforms. It combines a 20 × 20 continuous-time CMOS silicon retina vision sensor with a DSP microcontroller.

View Article and Find Full Text PDF

This letter presents a spike-based model that employs neurons with functionally distinct dendritic compartments for classifying high-dimensional binary patterns. The synaptic inputs arriving on each dendritic subunit are nonlinearly processed before being linearly integrated at the soma, giving the neuron the capacity to perform a large number of input-output mappings. The model uses sparse synaptic connectivity, where each synapse takes a binary value.

View Article and Find Full Text PDF

The field of neuromorphic silicon synapse circuits is revisited and a parsimonious mathematical framework able to describe the dynamics of this class of log-domain circuits in the aggregate and in a systematic manner is proposed. Starting from the Bernoulli Cell Formalism (BCF), originally formulated for the modular synthesis and analysis of externally linear, time-invariant logarithmic filters, and by means of the identification of new types of Bernoulli Cell (BC) operators presented here, a generalized formalism (GBCF) is established. The expanded formalism covers two new possible and practical combinations of a MOS transistor (MOST) and a linear capacitor.

View Article and Find Full Text PDF

This paper proposes an integrated event-based binaural silicon cochlea system aimed at efficient spatial audition and auditory scene analysis. The cochlea chip has a matched pair of digitally-calibrated 64-stage cascaded analog second-order filter banks with 512 pulse-frequency modulated (PFM) address-event representation (AER) outputs. The quality factors (Qs) of channels are individually adjusted by local DACs.

View Article and Find Full Text PDF

Deep Belief Networks (DBNs) have recently shown impressive performance on a broad range of classification problems. Their generative properties allow better understanding of the performance, and provide a simpler solution for sensor fusion tasks. However, because of their inherent need for feedback and parallel update of large numbers of units, DBNs are expensive to implement on serial computers.

View Article and Find Full Text PDF

We report on the neuromorphic sound localization circuit which can enhance the perceptual sensation in a hearing aid system. All elements are simple leaky integrate-and-fire neuron circuits with different parameters optimized to suppress the impacts of synaptic circuit noises. The detection range and resolution of the proposed neuromorphic circuit are 500 us and 5 us, respectively.

View Article and Find Full Text PDF

Capturing the functionality of active dendritic processing into abstract mathematical models will help us to understand the role of complex biophysical neurons in neuronal computation and to build future useful neuromorphic analog Very Large Scale Integrated (aVLSI) neuronal devices. Previous work based on an aVLSI multi-compartmental neuron model demonstrates that the compartmental response in the presence of either of two widely studied classes of active mechanisms, is a nonlinear sigmoidal function of the degree of either input temporal synchrony OR input clustering level. Using the same silicon model, this work expounds the interaction between both active mechanisms in a compartment receiving input patterns of varying temporal AND spatial clustering structure and demonstrates that this compartmental response can be captured by a combined sigmoid and radial-basis function over both input dimensions.

View Article and Find Full Text PDF

Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models.

View Article and Find Full Text PDF

Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience.

View Article and Find Full Text PDF

With the advent of new experimental evidence showing that dendrites play an active role in processing a neuron's inputs, we revisit the question of a suitable abstraction for the computing function of a neuron in processing spatiotemporal input patterns. Although the integrative role of a neuron in relation to the spatial clustering of synaptic inputs can be described by a two-layer neural network, no corresponding abstraction has yet been described for how a neuron processes temporal input patterns on the dendrites. We address this void using a real-time aVLSI (analog very-large-scale-integrated) dendritic compartmental model, which incorporates two widely studied classes of regenerative event mechanisms: one is mediated by voltage-gated ion channels and the other by transmitter-gated NMDA channels.

View Article and Find Full Text PDF