Publications by authors named "Shih-Chieh Chiang"

Cytotoxic therapies, besides directly inducing cancer cell death, can stimulate immune-dependent tumor growth control or paradoxically accelerate tumor progression. The underlying mechanisms dictating these opposing outcomes are poorly defined. Here, we show that cytotoxic therapy acutely upregulates cyclooxygenase (COX)-2 expression and prostaglandin E (PGE) production in cancer cells with pre-existing COX-2 activity.

View Article and Find Full Text PDF

Identifying strategies to improve the efficacy of immune checkpoint blockade (ICB) remains a major clinical need. Here, we show that therapeutically targeting the COX2/PGE/EP2-4 pathway with widely used nonsteroidal and steroidal anti-inflammatory drugs synergized with ICB in mouse cancer models. We exploited a bilateral surgery model to distinguish responders from nonresponders shortly after treatment and identified acute IFNγ-driven transcriptional remodeling in responder mice, which was also associated with patient benefit to ICB.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how inflammation affects cancer growth and treatment response, specifically by studying inflammatory tumor microenvironments (TMEs) in mice.
  • - Researchers discovered that natural killer (NK) cells producing interferon gamma (IFN-γ) can reshape TMEs, leading to the elimination of tumors through cytotoxic T cell (CTL) activity, but tumor-derived prostaglandin E2 (PGE2) can hinder this process.
  • - Analysis of various human cancer datasets revealed different inflammatory TME types, helping to create a gene-expression signature that predicts patient survival and responses to immunotherapy, thereby identifying crucial factors for cancer control.
View Article and Find Full Text PDF

Eukaryotic topoisomerase 1 (TOP1) regulates DNA topology to ensure efficient DNA replication and transcription. TOP1 is also a major driver of endogenous genome instability, particularly when its catalytic intermediate-a covalent TOP1-DNA adduct known as a TOP1 cleavage complex (TOP1cc)-is stabilised. TOP1ccs are highly cytotoxic and a failure to resolve them underlies the pathology of neurological disorders but is also exploited in cancer therapy where TOP1ccs are the target of widely used frontline anti-cancer drugs.

View Article and Find Full Text PDF

Crocetin, the major carotenoid in saffron, exhibits potent anticancer effects. However, the antileukemic effects of crocetin are still unclear, especially in primary acute promyelocytic leukemia (APL) cells. In the current study, the potential antipromyelocytic leukemia activity of crocetin and the underlying molecular mechanisms were investigated.

View Article and Find Full Text PDF

Ultraviolet-A and melanin are implicated in melanoma, but whether melanin in vivo screens or acts as a UVA photosensitiser is debated. Here, we investigate the effect of UVA-irradiation on non-pigmented, lightly and darkly pigmented melanocytes and melanoma cells using electron spin resonance (ESR) spectroscopy. Using the spin trap 5,5 Dimethyl-1-pyrroline N-oxide (DMPO), carbon adducts were detected in all cells.

View Article and Find Full Text PDF

Genomic damage can feature DNA-protein crosslinks whereby their acute accumulation is utilized to treat cancer and progressive accumulation causes neurodegeneration. This is typified by tyrosyl DNA phosphodiesterase 1 (TDP1), which repairs topoisomerase-mediated chromosomal breaks. Although TDP1 levels vary in multiple clinical settings, the mechanism underpinning this variation is unknown.

View Article and Find Full Text PDF

Topoisomerase poisons act by inducing abortive topoisomerase reactions, which generate stable protein-DNA breaks (PDBs) that interfere with transcription elongation and progression of replication forks. In vertebrates, Tyrosyl-DNA phosphodiesterase 1 (TDP1) plays a major role in removal of topoisomerase 1-associated PDBs in the nucleus and mitochondria by hydrolyzing the 3'-phosphotyrosine bond. Depletion of TDP1 sensitizes tumor cells with defective DNA repair capacity to the genotoxic effect of TOP1 poisons, while homozygous mutation of the catalytic residue of TDP1 is associated with cerebellar degeneration and ataxia.

View Article and Find Full Text PDF

Hexanucleotide repeat expansions represent the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which such expansions cause neurodegeneration are poorly understood. We report elevated levels of DNA-RNA hybrids (R-loops) and double strand breaks in rat neurons, human cells and C9orf72 ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signaling and accumulation of protein-linked DNA breaks.

View Article and Find Full Text PDF

Breakage of one strand of DNA is the most common form of DNA damage. Most damaged DNA termini require end-processing in preparation for ligation. The importance of this step is highlighted by the association of defects in the 3'-end processing enzyme tyrosyl DNA phosphodiesterase 1 (TDP1) and neurodegeneration and by the cytotoxic induction of protein-linked DNA breaks (PDBs) and oxidized nucleic acid intermediates during chemotherapy and radiotherapy.

View Article and Find Full Text PDF

The cellular response to replication stress requires the DNA-damage-responsive kinase ATM and its cofactor ATMIN; however, the roles of this signaling pathway following replication stress are unclear. To identify the functions of ATM and ATMIN in response to replication stress, we utilized both transcriptomics and quantitative mass-spectrometry-based phosphoproteomics. We found that replication stress induced by aphidicolin triggered widespread changes in both gene expression and protein phosphorylation patterns.

View Article and Find Full Text PDF

Aprataxin (APTX) deficiency causes progressive cerebellar degeneration, ataxia and oculomotor apraxia in man. Cell free assays and crystal structure studies demonstrate a role for APTX in resolving 5'-adenylated nucleic acid breaks, however, APTX function in vertebrates remains unclear due to the lack of an appropriate model system. Here, we generated a murine model in which a pathogenic mutant of superoxide dismutase 1 (SOD1(G93A)) is expressed in an Aptx-/- mouse strain.

View Article and Find Full Text PDF

Accumulation of peptide-linked DNA breaks contributes to neurodegeration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1) and human hereditary ataxia. TDP1 primarily operates at single-strand breaks (SSBs) created by oxidative stress or by collision of transcription machinery with topoisomerase I intermediates (Top1-CCs).

View Article and Find Full Text PDF

Breaking and sealing one strand of DNA is an inherent feature of chromosome metabolism to overcome torsional barriers. Failure to reseal broken DNA strands results in protein-linked DNA breaks, causing neurodegeneration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1), which removes stalled topoisomerase 1 peptides from DNA termini.

View Article and Find Full Text PDF

Palate, lung and nasal epithelial clone (PLUNC) proteins are structural homologues to the innate defence molecules LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI). PLUNCs make up the largest portion of the wider BPI/LBP/PLUNC-like protein family and are amongst the most rapidly evolving mammalian genes. In this study we systematically identified and characterised BPI/LBP/PLUNC-like protein-encoding genes in the chicken genome.

View Article and Find Full Text PDF

CUL4A and B encode subunits of E3-ubiquitin ligases implicated in diverse processes including nucleotide excision repair, regulating gene expression and controlling DNA replication fork licensing. But, the functional distinction between CUL4A and CUL4B, if any, is unclear. Recently, mutations in CUL4B were identified in humans associated with mental retardation, relative macrocephaly, tremor and a peripheral neuropathy.

View Article and Find Full Text PDF

Tyrosyl DNA phosphodiesterase (TDP1) is a DNA 3'-end processing enzyme that preferentially hydrolyses the bond between the 3'-end of DNA and stalled DNA topoisomerase 1. the importance of TDP1 is highlighted by its association with the human genetic disease spinocerebellar ataxia with axonal neuropathy. TDP1 comprises of a highly conserved C-terminus phosphodiesterase domain and a less conserved N-terminus tail.

View Article and Find Full Text PDF