Publications by authors named "Shih Ming Lin"

The issue of urban renewal is complex and multifaceted. In this study, six specialists in the construction industry were invited to conduct audio interviews, which were compiled into verbatim text. The key phrases were extracted by Grounded theory, and three levels of coding were retrieved.

View Article and Find Full Text PDF

The black soldier fly (BSF), Hermetia illucens, has the potential to serve as a valuable resource for waste bioconversion due to the ability of the larvae to thrive in a microbial-rich environment. Being an ecological decomposer, the survival of BSF larvae (BSFL) relies on developing an efficient defense system. Cathepsin L (CTSL) is a cysteine protease that plays roles in physiological and pathological processes.

View Article and Find Full Text PDF
Article Synopsis
  • Vibrio α-hemolysins (αHLs) are toxins produced by Vibrio pathogens that cause damage to host cells, playing a key role in bacterial infections.
  • The study focuses on Vibrio campbellii αHL (VcαHL) and shows that its activity is enhanced by calcium ions, which are important for its function and assembly on cell membranes.
  • Advanced techniques like X-ray crystallography and cryo-electron microscopy reveal the structure and changes of VcαHL, highlighting a calcium-binding site crucial for its activation, which could lead to new treatments for Vibrio infections.
View Article and Find Full Text PDF

Motivation: Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used in metabolomics studies, while HILIC LC-MS is particularly suited for polar metabolites. Determining an optimized mobile phase and developing a proper liquid chromatography method tend to be laborious, time-consuming and empirical.

Results: We developed a containerized web tool providing a workflow to quickly determine the optimized mobile phase by batch-evaluating chromatography peaks for metabolomics LC-MS studies.

View Article and Find Full Text PDF

Mitochondrial Hsp60 (mtHsp60) plays a crucial role in maintaining the proper folding of proteins in the mitochondria. mtHsp60 self-assembles into a ring-shaped heptamer, which can further form a double-ring tetradecamer in the presence of ATP and mtHsp10. However, mtHsp60 tends to dissociate in vitro, unlike its prokaryotic homologue, GroEL.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) technology allows massively parallel characterization of thousands of cells at the transcriptome level. scRNA-seq is emerging as an important tool to investigate the cellular components and their interactions in the tumor microenvironment. scRNA-seq is also used to reveal the association between tumor microenvironmental patterns and clinical outcomes and to dissect cell-specific effects of drug treatment in complex tissues.

View Article and Find Full Text PDF

Due to the lack of trust in the builder and indeterminate benefits, it is a struggle for people in Taiwan to make up their minds to participate in urban renewal. This leads to the completion rate of urban renewal of fewer than one ten-thousandth of the new construction needed. This study investigated the perspective on the research variables for people in Taiwan and how those influence their intention to participate in urban renewal.

View Article and Find Full Text PDF

Glucosinolates (GLSs) are a group of secondary metabolites that are involved in the defense of herbivores. In Arabidopsis thaliana, Glucosinolate Transporter 1 (AtGTR1) transports GLSs with high affinity via a proton gradient-driven process. In addition to transporting GLSs, AtGTR1 also transports phytohormones, jasmonic acid-isoleucine (JA-Ile), and gibberellin (GA).

View Article and Find Full Text PDF

Leptospirosis is an overlooked zoonotic disease caused by pathogenic Leptospira depended on virulence of Leptospira and the host-pathogen interaction. Kidney is the major organ infected by Leptospira which causes tubulointerstitial nephritis. Leptospira outer membrane contains several virulence factors and an outer membrane protein A (OmpA) like protein (Loa22) is essential for virulence.

View Article and Find Full Text PDF

The β-glucosidase, which hydrolyzes the β(1-4) glucosidic linkage of disaccharides, oligosaccharides and glucose-substituted molecules, has been used in many biotechnological applications. The current commercial source of β-glucosidase is mainly microbial fermentation. Plants have been developed as bioreactors to produce various kinds of proteins including β-glucosidase because of the potential low cost.

View Article and Find Full Text PDF

Two or more focal planes are required in augmented reality head-up displays (AR HUDs) to respectively present basic and interactive driving information to car drivers; whereas, solutions using two separated picture generation units (PGUs) with two sets of optics incur increased cost, reduced reliability, and expanded volume. To develop an AR HUD using a single PGU and a single curved mirror, we propose to set two logically separated regions on a single PGU and optically relay one of them to a new position to create two focal planes. A single freeform mirror acquired through careful optical and mechanical design optimization produces high image quality in an eyebox of 120 mm by 60 mm, simultaneously for a far image (9 m, 10° by 3°) and a near image (2.

View Article and Find Full Text PDF

Auxin regulates diverse processes involved in plant growth and development. AUX1 is the first identified and most widely investigated auxin importer, and plays an important role in root gravitropism and the development of lateral root and root hair. However, the regulation of auxin transport by AUX1 is still not well understood.

View Article and Find Full Text PDF

In this study, the resistive switching scheme using TiO nanorod arrays synthesized by a large-scale and low-cost hydrothermal process was reported. Especially, the nonlinear I-V characteristics of TiO nanorod arrays with a nonlinearity of up to ~10, which suppress the leakage current less than 10 Acm, were demonstrated, exhibiting a self-selecting resistive switching behavior. It provides a simple pathway for integration of RRAM crossbar arrays without additional stacking of active devices.

View Article and Find Full Text PDF

Core-shell NWs offer an innovative approach to achieve nanoscale metal-insulator-metal (MIM) heterostructures along the wire radial direction, realizing three-dimensional geometry architecture rather than planar type thin film devices. This work demonstrated the tunable resistive switching characteristics of ITO/HfO core-shell nanowires with controllable shell thicknesses by the atomic layer deposition (ALD) process for the first time. Compared to planar HfO thin film device configuration, ITO/HfO core-shell nanowire shows a prominent resistive memory behavior, including lower power consumption with a smaller SET voltage of ∼0.

View Article and Find Full Text PDF

Graphene, a two-dimensional material with honeycomb arrays of carbon atoms, has shown outstanding physical properties that make it a promising candidate material for a variety of electronic applications. To date, several issues related to the material synthesis and device fabrication need to be overcome. Despite the fact that large-area graphene films synthesised by chemical vapour deposition (CVD) can be grown with relatively few defects, the required transfer process creates wrinkles and polymer residues that greatly reduce its performance in device applications.

View Article and Find Full Text PDF

Tunable multilevel storage of complementary resistive switching (CRS) on single-step formation of ZnO/ZnWOx bilayer structure via interfacial engineering was demonstrated for the first time. In addition, the performance of the ZnO/ZnWOx-based CRS device with the voltage- and current-sweep modes was demonstrated and investigated in detail. The resistance switching behaviors of the ZnO/ZnWOx bilayer ReRAM with adjustable RESET-stop voltages was explained using an electrochemical redox reaction model whose electron-hopping activation energies of 28, 40, and 133 meV can be obtained from Arrhenius equation at RESET-stop voltages of 1.

View Article and Find Full Text PDF

One-step facile methodology to create nanotip arrays on chalcopyrite materials (such as CuInS2, Cu(In,Ga)S2, CuInSe2, and Cu(In,Ga)Se2) via a low energy ion beam bombardment process has been demonstrated. The mechanism of formation for nanotip arrays has been proposed by sputtering yields of metals and reduction of metals induced by the ion beam bombardment process. The optical reflectance of these chalcopyrite nanotip arrays has been characterized by UV-vis spectrophotometer and the efficient light-trapping effect has been observed.

View Article and Find Full Text PDF

A spontaneously formed ZnO/ZnWOx bilayer resistive memory via an interfacial engineering by one-step sputtering process with controllable high resistance states was demonstrated. The detailed formation mechanism and microstructure of the ZnWOx layer was explored by X-ray photoemission spectroscopy (XPS) and transmission electron microscope in detail. The reduced trapping depths from 0.

View Article and Find Full Text PDF

We present a ZnO(1-x) nanorod array (NR)/ZnO thin film (TF) bilayer structure synthesized at a low temperature, exhibiting a uniquely rectifying characteristic as a homojunction diode and a resistive switching behavior as memory at different biases. The homojunction diode is due to asymmetric Schottky barriers at interfaces of the Pt/ZnO NRs and the ZnO TF/Pt, respectively. The ZnO(1-x) NRs/ZnO TF bilayer structure also shows an excellent resistive switching behavior, including a reduced operation power and enhanced performances resulting from supplements of confined oxygen vacancies by the ZnO(1-x) NRs for rupture and recovery of conducting filaments inside the ZnO TF layer.

View Article and Find Full Text PDF

H(+)-translocating pyrophosphatases (H(+)-PPases) are active proton transporters that establish a proton gradient across the endomembrane by means of pyrophosphate (PP(i)) hydrolysis. H(+)-PPases are found primarily as homodimers in the vacuolar membrane of plants and the plasma membrane of several protozoa and prokaryotes. The three-dimensional structure and detailed mechanisms underlying the enzymatic and proton translocation reactions of H(+)-PPases are unclear.

View Article and Find Full Text PDF

Background: This study addresses the efficacy of an automated decontamination protocol using the germicide 'tetra acetyl ethylene diamine (TAED) perborate' (Farmec SpA, Italy). The germicide TAED perborate protocol is used in the Castellini Dental Units fitted with an Autosteril unit (an automated device that can cycle 0.26% TAED perborate solution and sterile water for cleaning the water system between patients and overnight).

View Article and Find Full Text PDF