Capillary electrochromatography (CEC) is a rapidly emerging separation technique that merges the high separation efficiency of capillary electrophoresis with the exceptional selectivity of liquid chromatography. However, it remains a synthetic challenge to design functional chiral stationary phases (CSPs) with high chemical stability against acid and base in CEC enantioseparation. Here we demonstrate that incorporating chiral crown ethers into stable covalent organic frameworks (COFs) enables efficient and stable separations of racemates by CEC.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2025
Optically active π-conjugated polymers (OACPs) have garnered increasing research interest for their resemblance to biological helices and intriguing chirality-related functions. Traditional methods for synthesizing involve decorating achiral conjugated polymer architectures with enantiopure side substituents through complex organic synthesis. Here, we report a new approach: the templated synthesis of unsubstituted OACPs via supramolecularly confined polymerizations of achiral monomers within nanopores of 2D or 3D chiral covalent organic frameworks (CCOFs).
View Article and Find Full Text PDFCovalent organic frameworks (COFs) have undergone extensive research as heterogeneous catalysts for a wide range of significant reactions, but they have not yet been investigated in the realm of electrochemical asymmetric catalysis, despite their recognition as an economical and sustainable strategy for producing enantiopure compounds. Here, we report a mixed-linker strategy to design multicomponent two-dimensional (2D) chiral COFs with tunable layer stacking for highly enantioselective electrocatalysis. By crystallizing mixtures of triamines with and without the MacMillan imidazolidinone catalyst or aryl substituent (ethyl and isopropyl) and a dialdehyde derivative of thieno-[3,2-]thiophene, we synthesized and structurally characterized a series of three-component homochiral 2D COFs featuring either AA or ABC stacking.
View Article and Find Full Text PDFThe separation of enantiomers using high-performance chromatography technologies represents great importance and interest. In this aspect, β-cyclodextrin (β-CD) and its derivatives have been extensively studied as chiral stationary phases (CSPs). Nevertheless, β-CD that was immobilized on a traditional matrix often exhibited low stabilities and limited operating ranges.
View Article and Find Full Text PDFWhile crystalline covalent organic frameworks (COFs) linked by C-C bonds are highly desired in synthetic chemistry, it remains a formidable challenge to synthesize. Efforts to generate C-C single bonds in COFs via de novo synthesis usually afford amorphous structures rather than crystalline phases. We demonstrate here that C-C single bond-based COFs can be prepared by direct reduction of C═C bond-linked frameworks via crystal-to-crystal transformation.
View Article and Find Full Text PDFA highly ordered chiral mesoporous silica-coated capillary column has been used for high-resolution gas chromatographic separations. The column has excellent selectivity, not only for the separation of isomers, polycyclic aromatic hydrocarbons, linear alkanes, long chain alkanes, Grob's test mixture and aromatic hydrocarbons, but also for the resolution of different classes of chiral compounds. Additionally, the column exhibits high column efficiency, excellent temperature resistance, and analysis times are short.
View Article and Find Full Text PDF