G protein-coupled receptor class C group 5 member B (GPRC5B) is involved in extracellular glucose sensing, glucose metabolism, and insulin resistance. Many cancers require glucose at high concentrations to survive and grow. We have investigated the association between tumour GPRC5B expression and the prognosis for patients with cancer, including head-and-neck squamous cell carcinoma (HNSCC), using data from The Human Protein Atlas.
View Article and Find Full Text PDFCancer is a leading cause of death and disease worldwide, with a tremendous financial impact. Thus, the development of cost-effective novel approaches for suppressing tumor growth and progression is essential. In an attempt to identify the mechanisms responsible for tumor suppression, we screened for molecules downregulated in a cancer progression model and found that the chemokine CXCL14, also called BRAK, was the most significantly downregulated.
View Article and Find Full Text PDFExtracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pH ) has been found to increase intracellular Ca and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca-dependent monovalent cation channel, is associated with acidic pH signaling and induction of MMP-9 expression in this mouse melanoma model.
View Article and Find Full Text PDFCXCL14/BRAK (BRAK) is a secreted chemokine with anti-tumor activity, and its expression is suppressed in tumor cells. We previously reported the anti-tumor activity of BRAK in cell lines of head and neck squamous cell carcinoma (HNSCC) and the suppression of BRAK secretion in these cells. BRAK secretion in fibrosarcoma cells is restored by Fasudil, which is a Rho-kinase (ROCK) inhibitor.
View Article and Find Full Text PDFAcidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia.
View Article and Find Full Text PDFWe previously reported that chemokine CXCL14/BRAK (BRAK) has antitumor activity in several carcinoma cells indicating that BRAK secretion suppresses carcinoma cells. Ras-homologous small GTPase (RhoA) and Rho-associated coiled-coil-containing protein kinase (ROCK) are important regulators of secretory processes, and activation of the RhoA/ROCK signaling pathway stimulates tumor invasion and metastasis. We investigated the effects of fasudil, a specific ROCK inhibitor, on BRAK secretion and tumor progression in mesenchymal fibrosarcoma cells (MC57).
View Article and Find Full Text PDFThe chemokine BRAK/CXCL14 (BRAK) is expressed in normal squamous epithelium, but is not expressed or is expressed at negligible levels in head and neck squamous cell carcinoma. Malignant cells are known to be dedifferentiated compared with normal epithelial cells, suggesting a role for differentiation cues in the expression of BRAK. Thus, we examined the relationship between BRAK expression and stages of differentiation level in epithelial cells.
View Article and Find Full Text PDFThe present study investigated the effects of oxidative stress induced by reactive oxygen species (ROS), such as hydrogen peroxide (H(2)O(2)) and hydroxyl radical (HO(*)), on the expression of both BRAK , which is also known as non-ELR motif angiostatic CXC chemokine ligand 14 (CXCL14), in head and neck squamous cell carcinoma (HNSCC) cells. When HNSCC cells were cultured in the presence of ROS, the expression of BRAK was significantly decreased whereas that of IL-8 was increased. Interestingly, the effects on the expression of both genes in HNSCC cells were much greater with HO(blacksquare, square, filled) than with H(2)O(2).
View Article and Find Full Text PDFWe reported previously that the forced expression of the chemokine BRAK/CXCL14 in head and neck squamous cell carcinoma cells decreased the rate of tumor formation and size of tumor xenografts in athymic nude mice and SCID mice. In order to clarify the expression of BRAK/CXCL14 affected either the settlement of carcinoma cells in host tissues in vivo or proliferation of the colonized carcinoma cells or both, we prepared oral floor carcinoma-derived HSC-2 cells in which BRAK/CXCL14 expression was induced upon doxycycline treatment. Then 30 nude mice were separated into 3 groups composed of 10 mice per group: Group I, the control, in which the engineered cells were directly xenografted onto the back of the mice; Group II, the cells were xenografted and then the mice were treated with doxycycline; and Group III, the cells were pretreated with doxycycline during culture, and the host mice were also treated with the drug before and after xenografting.
View Article and Find Full Text PDFThe mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38 alpha, beta, gamma and delta.
View Article and Find Full Text PDFBRAK/CXCL14 is a chemokine that is expressed in many normal cells and tissues but is absent from or expressed at very low levels in transformed cells and cancerous tissues including head and neck squamous cell carcinoma (HNSCC). We reported previously that the forced expression of BRAK/CXCL14 in HNSCC cells decreased the rate of tumor formation and size of tumor xenografts in athymic nude mice and SCID mice, suggesting that expression level of the gene is important for tumor suppression. In order to study the regulatory mechanisms governing the expression of this gene, we determined the transcriptional start site and promoter motifs of the gene.
View Article and Find Full Text PDFWe reported previously that the forced expression of the chemokine BRAK, also called CXCL14 in head and neck squamous cell carcinoma (HNSCC) cells decreased the rate of tumor formation and size of tumor xenografts compared with mock-vector treated cells in athymic nude mice or in severe combined immunodeficiency mice. This suppression occurred even though the growth rates of these cells were the same under in vitro culture conditions, suggesting that a high expression level of the gene in tumor cells is important for the suppression of tumor establishment in vivo. The aim of this study was to determine whether CXCL14/BRAK transgenic mice show resistance to tumor cell xenografts or not.
View Article and Find Full Text PDFBRAK/CXCL14 (breast- and kidney-expressed chemokine/CXC chemokine ligand 14) is a chemokine that is expressed in many normal cells and tissues but is absent from or expressed at very low levels in transformed cells and cancerous tissues, including HNSCC (head and neck squamous cell carcinoma). We reported previously that the forced expression of BRAK/CXCL14 in HNSCC (HSC-3 BRAK) cells decreased the rate of tumour formation and size of tumour xenografts compared with mock-vector-introduced (HSC-3 Mock) cells in athymic nude mice, even though the growth rates of these cells were the same under in vitro culture conditions, suggesting that high-level expression of the gene is important for the suppression of tumour establishment in vivo. For the first step to study the mechanisms of BRAK-dependent tumour suppression, we compared characteristics between HSC-3 BRAK and HSC-3 Mock cells under in vitro culture conditions.
View Article and Find Full Text PDFSCID mice are a model of human severe combined immunodeficiency disease and are deficient in B cell function in addition to T cell function. Tumors from other species are easily transplanted into SCID mice and will grow without being rejected. We previously reported that the chemokine BRAK/CXCL14 is expressed in normal cells but its expression is down regulated in an in vitro cancer progression model, suggesting that it has the potential for antitumor activity.
View Article and Find Full Text PDFClinical efficacy of gefitinib (ZD1839, Iressa), which is an inhibitor specific for epidermal growth factor (EGF) receptor tyrosine kinase, has been shown in non-small-cell lung carcinoma patients with EGF receptor mutations, so these mutations are useful marker(s) to find a responder for the drug. Recent studies have shown that the EGF receptor gene mutation is rare in squamous cell carcinoma in the esophageal and head and neck regions. We previously reported that the expression of the chemokine BRAK/CXCL14 in head and neck squamous cell carcinoma (HNSCC) cells was down-regulated by EGF treatment, and that forced expression of BRAK in tumor cells decreased the tumorigenicity of the cells in xenografts.
View Article and Find Full Text PDFAcidic extracellular pH is a common feature of tumor tissues. We have reported that culturing cells at acidic pH (5.4-6.
View Article and Find Full Text PDFCollagen has been reported to be essential for the proliferation of various kinds of cells including human osteoblastic cells [Takamizawa, S., Maehata, Y., Imai, K.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2006
In order to find a suppressor(s) of tumor progression in vivo for oral carcinoma (OC), we searched for molecules down-regulated in OC cells when the cells were treated with epidermal growth factor (EGF), whose receptor is frequently over-activated in OC. The expression of BRAK, which is also known as CXC chemokine ligand14 (CXCL14), was down-regulated significantly by the treatment of OC cells with EGF as observed by cDNA microarray analysis followed by reverse-transcriptase polymerase chain reaction analysis. The EGF effect was attenuated by the co-presence of a MEK inhibitor.
View Article and Find Full Text PDFIn order to investigate the mechanisms by which 1alpha,25(OH)2 vitamin D3 (VD3) stimulates the differentiation of human osteoblasts, we cultured MG-63, which is a human osteoblastic cell line, in the presence or absence of VD3 and/or L-ascorbic acid 2-phosphate (Asc 2-P), a long-acting vitamin C derivative. The cell growth rate was decreased by the presence of VD3 in the culture medium. Type I collagen synthesis and alkaline phosphatase (ALP) activity, which are markers of early stage osteoblast differentiation, were stimulated by the presence of VD3 as well as by that of Asc 2-P.
View Article and Find Full Text PDF