Publications by authors named "Shigeyasu Ito"

Some bacteria produce non-sulfated chondroitin (CH). Accurate, rapid, and high throughput methods to quantify CH in fermented cultures helps to improve microbial breeding and fermentation conditions efficiently. In this study, highly sensitive methods to quantify bacterial CH were developed based on ELISA techniques.

View Article and Find Full Text PDF

The R-type lectin EW29, isolated from the earthworm Lumbricus terrestris, consists of two homologous domains (14,500 Da) showing 27% identity with each other. The C-terminal domain (Ch; C-half) of EW29 (EW29Ch) has two sugar-binding sites in subdomains alpha and gamma, and the protein uses these sugar-binding sites for its function as a single-domain-type hemagglutinin. In order to determine the sugar-binding ability and specificity for each of the two sugar-binding sites in EW29Ch, ligand-induced chemical-shift changes in EW29Ch were monitored using (1)H-(15)N HSQC spectra as a function of increasing concentrations of lactose, melibiose, D-galactose, methyl alpha-D-galactopyranoside and methyl beta-D-galactopyranoside.

View Article and Find Full Text PDF

Retaining glycosyl hydrolases, which catalyse both glycosylation and deglycosylation in a concerted manner, are the most abundant hydrolases. To date, their visualization has tended to be focused on glycosylation because glycosylation reactions can be visualized by inactivating deglycosylation step and/or using substrate analogues to isolate covalent intermediates. Furthermore, during structural analyses of glycosyl hydrolases with hydrolytic reaction products by the conventional soaking method, mutarotation of an anomeric carbon in the reaction products promptly and certainly occurs.

View Article and Find Full Text PDF

In order to understand glycoprotein functionality, information on the structure of both the core proteins and the glycan moieties is necessary. From a practical viewpoint, glycopeptides rather than whole glycoproteins are the general targets for structural analysis, which is primarily carried out by employing mass spectrometry (MS). Using the "glycoproteomics" concept, several techniques have recently been developed to allow the preparation of a series of reference glycopeptides.

View Article and Find Full Text PDF

Xylanase SoXyn10A from Streptomyces olivaceoviridis E-86 comprises a family 10 catalytic module linked to a family 13 carbohydrate-binding module (SoCBM13). The SoCBM13 has a beta-trefoil structure, with binding sites in each subdomain (alpha, beta and gamma). Subdomain alpha, but not subdomains beta and gamma, binds tightly to lactose.

View Article and Find Full Text PDF