Publications by authors named "Shigetoshi Okazaki"

Protein aggregates cause abnormal states and trigger various diseases, including neurodegenerative disorders. This study examined whether the xanthene dye derivative Rose Bengal could track a series of conformational changes in protein aggregates. Using lysozyme as a model protein, aggregated proteins were prepared by heating under acidic conditions.

View Article and Find Full Text PDF

Purpose: Measurements of macular pigment optical density (MPOD) using the autofluorescence spectroscopy yield underestimations of actual values in eyes with cataracts. Previously, we proposed a correction method for this error using deep learning (DL); however, the correction performance was validated through internal cross-validation. This cross-sectional study aimed to validate this approach using an external validation dataset.

View Article and Find Full Text PDF

An axial-connecting trimer of the porphyrin phosphorus(V) complex was synthesized to evaluate the relaxation process of the photoexcited state and the photosensitizer activity. The photoexcitation energy was localized on the central unit of the phosphorus(V)porphyrin trimer. The photoexcited state of the central unit was relaxed through a process similar to that of the monomer phosphorus(V)porphyrin.

View Article and Find Full Text PDF

Label-free image identification of circulating rare cells, such as circulating tumor cells within peripheral blood nucleated cells (PBNCs), the vast majority of which are white blood cells (WBCs), remains challenging. We previously described developing label-free image cytometry for classifying live cells using computer vision technology for pattern recognition, based on the subcellular structure of the quantitative phase microscopy images. We applied our image recognition methods to cells flowing in a flow cytometer microfluidic channel, and differentiated WBCs from cancer cell lines (area under receiver operating characteristic curve = 0.

View Article and Find Full Text PDF

TONS504 (CHNOI), a chlorine derivative, effectively generates singlet oxygen by light activation and exhibits photodynamic antimicrobial effects (PAEs) on various pathogens. However, this photosensitizer has some limitations: a high tendency to self-aggregate and a relatively weak PAE for Gram-negative bacteria compared with Gram-positive bacteria. To overcome these limitations, the present study investigated the synergistic effects of the PAE of TONS504 and two additives commonly contained in ophthalmic solutions: benzalkonium chloride (BAC) or ethylenediaminetetraacetic acid (EDTA).

View Article and Find Full Text PDF

Photoisomerization of lipids has been well studied. As for the eyes, photoisomerization from 11-cis isomer to all-trans-retinal is well-known as the first step of the visual transduction in the photoreceptors. In addition to that, there would be other ocular lipids that undergo photoisomerization, which may be involved in ocular health and function.

View Article and Find Full Text PDF

In two-photon microscopy, aberration correction is an essential technique for realizing high resolution in deep regions. A spatial light modulator (SLM) incorporated into an optical system for two-photon microscopy performs pre-compensation on the wavefront of the excitation beam, restoring the resolution close to the diffraction limit even in the deep region of a biological sample. If a spatial resolution smaller than the diffraction limit can be achieved along with aberration correction, the importance of two-photon microscopy for deep region observation will increase further.

View Article and Find Full Text PDF

TONS504 (C51H58O5I2) is a chlorin derivative that exhibits a photodynamic antimicrobial effect (PAE) on various infectious keratitis pathogens. However, the molecular characteristics of TONS504 are not well understood. This study aimed to investigate the molecular characteristics of TONS504 by comparing its singlet oxygen (O) quantum yields and PAE with those of methylene blue (MB).

View Article and Find Full Text PDF

Purpose: Measurements of macular pigment optical density (MPOD) by the autofluorescence technique yield underestimations of actual values in eyes with cataract. We applied deep learning (DL) to correct this error.

Subjects And Methods: MPOD was measured by SPECTRALIS (Heidelberg Engineering, Heidelberg, Germany) in 197 eyes before and after cataract surgery.

View Article and Find Full Text PDF

To control the activity of photodynamic agents by pH, an electron donor-connecting cationic porphyrin, -(,-dimethyl-4-aminophenyl)-tris(-methyl--pyridinio)porphyrin (DMATMPyP), was designed and synthesized. The photoexcited state (singlet excited state) of DMATMPyP was deactivated through intramolecular electron transfer under a neutral condition. The p of the protonated DMATMPyP was 4.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a histochemical technique called vessel painting that enables 3D, multicolor imaging of blood vessels and surrounding tissues, which is crucial for understanding vascular diseases.* -
  • The research includes developing applications that combine vessel painting with immunostaining and tissue clearing for use in advanced microscopy methods, enhancing the imaging capability.* -
  • A new microscopy setup with an aberration correction system was introduced, improving image quality and demonstrating the method's effectiveness by visualizing detailed changes in kidney structures of mice with a specific kidney disease.*
View Article and Find Full Text PDF

We propose a line-field quantitative phase-imaging flow cytometer for analyzing large populations of label-free cells. Hydrodynamical focusing brings cells into the focus plane of an optical system while diluting the cell suspension, resulting in decreased throughput rate. To overcome the trade-off between throughput rate and in-focus imaging, our cytometer involves digitally extending the depth-of-focus on loosely hydrodynamically focusing cell suspensions.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are widely used for the intracellular delivery of peptides and proteins, but CPP fusion peptides and proteins are often transported by endocytosis and trapped in endosomes. Photochemical internalization (PCI) is a method for the endosomal escape of the trapped peptide or protein and release into the cytosol using light and photosensitizers. In PCI, endosomal membranes are thought to be destabilized by singlet oxygen (O) photogenerated from photosensitizers localized in endosomes.

View Article and Find Full Text PDF

In photodynamic therapy (PDT), singlet oxygen ([Formula: see text]) is the main species responsible for promoting tumor cell death. The determination of the quantum yield (Φ) of a photosensitizer (PS) is important for dosimetry. The purpose of this paper is to quantify the [Formula: see text] generated by the PS by near-infrared spectroscopy (NIRS).

View Article and Find Full Text PDF

DiethoxyP(V)tetrakis(-methoxyphenyl)porphyrin (EtP(V)TMPP) and its fluorinated derivative (FEtP(V)TMPP) were synthesized to examine their photodynamic action. These P(V)porphyrins were aggregated in an aqueous solution, resulting in the suppression of their photodynamic activity. In the presence of human serum albumin (HSA), a water-soluble protein, the aggregation states were resolved and formed a binding complex between P(V)porphyrin and HSA.

View Article and Find Full Text PDF

While the development of low-molecular-weight drugs is saturating, agents for photodynamic therapies (PDTs) may become alternative seeds in pharmaceutical industry. Among them, orally administrative, cancer-selective, and side effect-free photosensitizers (PSs) that can be activated by tissue-penetrative near-infrared (NIR) lights are strongly demanded. We discovered such a PS from scratch by focusing on a twist-assisted spin-orbit charge transfer intersystem crossing (ISC) mechanism in a biphenyl derivative, which was demonstrated by thorough photophysical studies.

View Article and Find Full Text PDF

It is demonstrated that cells can be classified by pattern recognition of the subcellular structure of non-stained live cells, and the pattern recognition was performed by machine learning. Human white blood cells and five types of cancer cell lines were imaged by quantitative phase microscopy, which provides morphological information without staining quantitatively in terms of optical thickness of cells. Subcellular features were then extracted from the obtained images as training data sets for the machine learning.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a non-invasive, selective, and cost-effective cancer therapy. The development of readily accessible templates that allow rapid structural modification for further improvement of PDT remains important. We previously reported thiophene-based organic D-π-A sensitizers consisted of an electron-donating (D) moiety, a π-conjugated bridge (π) moiety, and an electron-accepting (A) moiety as valuable templates for a photosensitizer that can be used in PDT.

View Article and Find Full Text PDF

Prevalent photosensitizing agents for photodynamic therapy (PDT) suffer from their relatively large molecular weights causing photodermatosis. In this regard, low molecular weight pyrene could be an efficient photosensitizer except for its extreme hydrophobicity. To tackle the insolubility of pyrene, we synthesized 1-carboxypyren-2-yl C-glucoside 4 by a tethered C-glucosylation and 1-pyrenylmethyl O-glucoside 5 by a simple O-glucosylation.

View Article and Find Full Text PDF

Purpose: To demonstrate the presence of macular pigment in the retina of premature infants, and to examine its changes with age.

Methods: The participants included 40 premature infants. Infants who had received laser photocoagulation for retinopathy of prematurity were excluded.

View Article and Find Full Text PDF

Background: Investigation of the internal tissues and organs of a macroscopic organism usually requires destructive processes, such as dissection or sectioning. These processes are inevitably associated with the loss of some spatial information. Recently, aqueous-based tissue clearing techniques, which allow whole-organ or even whole-body clearing of small rodents, have been developed and opened a new method of three-dimensional histology.

View Article and Find Full Text PDF

In this paper, excitation light wavefront modulation is performed considering the curved sample surface shape to demonstrate high-quality deep observation using two-photon excitation microscopy (TPM) with a dry objective lens. A large spherical aberration typically occurs when the refractive index (RI) interface between air and the sample is a plane perpendicular to the optical axis. Moreover, the curved sample surface shape and the RI mismatch cause various aberrations, including spherical ones.

View Article and Find Full Text PDF

The binding modes of a pyrene-porphyrin dyad, (1-pyrenyl)-tris(N-methyl-p-pyridino)porphyrin (PyTMpyP), to various DNAs (calf thymus DNA (Ct-DNA), poly[d(G-C)2], and poly[d(A-T)2]) have been investigated using circular dichroism and linear dichroism measurements. Based on the polarization spectroscopic results, it can be shown that the pyrenyl and porphryin planes are skewed to a large extent for PyTMPyP in an aqueous environment and in the binding site of poly[d(G-C)2]. In this complex, a photoinduced electron transfer (PET) process between the pyrenyl and porphyrin moieties occurs.

View Article and Find Full Text PDF

The recent development of quantum cascade lasers (QCLs) has facilitated the irradiation of a mid-infrared laser beam that is specifically absorbed by a target molecular bond. Aiming for a selective delivery of laser energy to a specific absorption at 1,738 cm by the ester bonds of triacylglycerol (TAG), a QCL beam with a wavenumber of 1,710 cm was irradiated to 3T3-L1 adipocytes and preadipocytes. Neutral red staining, and FITC-labeled annexin V and ethidium homodimer-III assays revealed the occurrence of adipocyte-specific cell death 24 h after QCL irradiation.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a less-invasive treatment for cancer through the administration of less-toxic porphyrins and visible-light irradiation. Photosensitized damage of biomacromolecules through singlet oxygen (O) generation induces cancer cell death. However, a large quantity of porphyrin photosensitizer is required, and the treatment effect is restricted under a hypoxic cellular condition.

View Article and Find Full Text PDF