Publications by authors named "Shigetoshi Miura"

Plants respond to herbivory by perceiving herbivore danger signal(s) (HDS(s)), including "elicitors", that are present in herbivores' oral secretions (OS) and act to induce defense responses. However, little is known about HDS-specific molecules and intracellular signaling. Here we explored soybean receptor-like kinases (RLKs) as candidates that might mediate HDS-associated RLKs' (HAKs') actions in leaves in response to OS extracted from larvae of a generalist herbivore, Spodoptera litura.

View Article and Find Full Text PDF

Serum endonucleases are essential for degrading the chromatin released from dead cells and preventing autoimmune diseases such as systemic lupus erythematosus. Serum DNase I is known as the major endonuclease, but recently, another endonuclease, DNase γ/DNase I-like 3, gained attention. However, the precise role of each endonuclease, especially that of DNase γ, remains unclear.

View Article and Find Full Text PDF

Cytochrome P450s are widespread in the plant kingdom. The functions of plant P450s are dispersed through many aspects of plant metabolisms, which are involved in the biosynthesis of defense compounds and protectants against ultraviolet rays, as well as metabolic pathways for the biosynthesis and/or degradation of fatty acids, hormones, and signaling molecules. We found a gene for rice P450, OsCYP84A, which was classified into CYP84A in the CYP71 clan.

View Article and Find Full Text PDF

The linker histones H1 are a family of lysine-rich proteins that associate with the stretch of DNA that enters and exits the nucleosome. The linker histones facilitate the compaction and condensation of chromatin. The globular domain of histone H1(0), a specific subtype of histone H1, was crystallized at 288 K using the microbatch under silicone oil method with potassium phosphate as a precipitating agent.

View Article and Find Full Text PDF

Bezafibrate, an antilipidemic drug, is known as a potent allosteric effector of hemoglobin. The previously proposed mechanism for the allosteric potency of this drug was that it stabilizes and constrains the T-state of hemoglobin by specifically binding to the large central cavity of the T-state. Here we report a new allosteric binding site of fully liganded R-state hemoglobin for this drug.

View Article and Find Full Text PDF