A double-heptamer ring chaperonin GroEL binds denatured substrate protein, ATP, and GroES to the same heptamer ring and encapsulates substrate into the central cavity underneath GroES where productive folding occurs. GroES is a disk-shaped heptamer, and each subunit has a GroEL-binding loop. The residues of the GroEL subunit responsible for GroES binding largely overlap those involved in substrate binding, and the mechanism by which GroES can replace the substrate when GroES binds to GroEL/substrate complex remains to be clarified.
View Article and Find Full Text PDFIn order to understand how inter-subunit association stabilizes oligomeric proteins, a single polypeptide chain variant of heptameric co-chaperonin GroES (tandem GroES) was constructed from Escherichia coli heptameric GroES by linking consecutively the C-terminal of one subunit to the N-terminal of the adjacent subunit with a small linker peptide. The tandem GroES (ESC7) showed properties similar to wild-type GroES in structural aspects and co-chaperonin activity. In unfolding and refolding equilibrium experiments using guanidine hydrochloride (Gdn-HCl) as a denaturant at a low protein concentration (50 microg ml(-1)), ESC7 showed a two-state transition with a greater resistance toward Gdn-HCl denaturation (Cm=1.
View Article and Find Full Text PDF