Publications by authors named "Shigetada Teshima-Kondo"

Article Synopsis
  • Certain influenza viruses require the cleavage of their hemagglutinin (HA) by host cell proteases to trigger infection, with different proteases acting on distinct HA motifs.
  • The study focuses on the human protease MSPL, revealing its crystal structure in complex with a substrate-analog inhibitor, highlighting key interactions that facilitate its enzymatic function.
  • Insights from MSPL's structure led to a model for another protease, TMPRSS2, which is crucial for activating the spike protein of SARS-CoV-2, potentially guiding the development of new COVID-19 treatments.
View Article and Find Full Text PDF

The relationship between epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) pathways in tumor growth is well established. EGF induces VEGF production in cancer cells, and the paracrine VEGF activates vascular endothelial cells to promote tumor angiogenesis and thus supports tumor cell growth in an angiogenesis-dependent manner. In this study, we found angiogenesis-independent novel crosstalk between the VEGF and the EGF pathways in the regulation of colon cancer cell proliferation.

View Article and Find Full Text PDF

Anti-angiogenic therapies targeting vascular endothelial growth factor (VEGF) and its receptor (VEGF-R) are important treatments for a number of human malignancies, including colorectal cancers. However, there is increasing evidence that VEGF/VEGF-R inhibitors promote the adaptive and evasive resistance of tumor cells to the therapies. The mechanism by which the cancer cells become resistant remains unclear.

View Article and Find Full Text PDF

Unloading-mediated muscle atrophy is associated with increased reactive oxygen species (ROS) production. We previously demonstrated that elevated ubiquitin ligase casitas B-lineage lymphoma-b (Cbl-b) resulted in the loss of muscle volume (Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T. Mol Cell Biol 29: 4798-4811, 2009).

View Article and Find Full Text PDF

Recently, inhibition of tumor angiogenesis has become an important anti-cancer therapy. Tumor angiogenesis is regulated by multiple signaling pathways, including VEGF and VEGF receptor (VEGF-R), FGF and FGF receptor (FGF-R), and PDGF and PDGF receptor (PDGF-R) pathways. Thus, the antiangiogenic agents, such as regorafenib, simultaneously target those receptors on vascular endothelial cells.

View Article and Find Full Text PDF

Although vascular endothelial growth factor receptor (VEGF-R)-targeted antiangiogenic agents are important treatment for a number of human malignancies, there is accumulating evidence that the therapies may promote disease progression, such as invasion and metastasis. How tumors become to promote their evasiveness remains fully uncertain. One of possible mechanisms for the adaptation may be a direct effect of VEGF-R inhibitors on tumor cells expressing VEGF-R.

View Article and Find Full Text PDF

Uncoupling protein 3 (UCP3) and pyruvate dehydrogenase kinase 4 (PDK4) in skeletal muscle are key regulators of the glucose and lipid metabolic processes that are involved in insulin resistance. Medium-chain fatty acids (MCFAs) have anti-obesogenic effects in rodents and humans, while long-chain fatty acids (LCFAs) cause increases in body weight and insulin resistance. To clarify the beneficial effects of MCFAs, we examined UCP3 and PDK4 expression in skeletal muscles of mice fed a MCFA- or LCFA-enriched high-fat diet (HFD).

View Article and Find Full Text PDF

Uncoupling protein 3 (UCP3) is known to regulate energy dissipation, proton leakage, fatty acid oxidation, and oxidative stress. To identify the putative protein regulators of UCP3, we performed yeast two-hybrid screens. Here we report that UCP3 interacted with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that was localized in the mitochondria, and is involved in cellular responses to Ca(2+).

View Article and Find Full Text PDF

Cbl-b is a RING-type ubiquitin ligase. Previously, we showed that Cbl-b-mediated ubiquitination and proteosomal degradation of IRS-1 contribute to muscle atrophy caused by unloading stress. The phospho-pentapeptide DGpYMP (Cblin) mimics Tyr612-phosphorylated IRS-1 and inhibits the Cbl-b-mediated ubiquitination and degradation of IRS-1 in vitro and in vivo.

View Article and Find Full Text PDF

A number of anti-angiogenic drugs targeting vascular endothelial growth factor receptors (VEGF-R) have developed and enabled significant advances in cancer therapy including colorectal cancer. However, acquired resistance to the drugs occurs, leading to disease progression, such as invasion and metastasis. How tumors become the resistance and promote their malignancy remains fully uncertain.

View Article and Find Full Text PDF

Background: In recent years, the number of bedridden people is rapidly increasing due to aging or lack of exercise in Japan. This problem is becoming more serious, since there is no countermeasure against it. In the present study, we designed to investigate whether dietary proteins, especially soy, had beneficial effects on skeletal muscle in 59 volunteers with various physical activities.

View Article and Find Full Text PDF

Muscle atrophy is a complex process that occurs as a consequence of various stress events. Muscle atrophy-associated genes (atrogenes) such as atrogin-1/MAFbx and MuRF-1 are induced early in the atrophy process, and the increase in their expression precedes the loss of muscle weight. Although antioxidative nutrients suppress atrogene expression in skeletal muscle cells, the inhibitory effects of flavonoids on inflammation-induced atrogin-1/MAFbx expression have not been clarified.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers discovered a new bifunctional RNA, FL-Irs-1 mRNA, from the insulin receptor substrate-1 (Irs-1) gene, which is mainly found in skeletal muscle tissue.
  • FL-Irs-1 mRNA acts both as a source of IRS-1 protein during myoblast differentiation and as a regulatory RNA that influences Rb mRNA levels, crucial for muscle cell development.
  • Overexpressing the FL-Irs-1 5'UTR reduces Rb mRNA levels, while knocking down FL-Irs-1 mRNA enhances Rb expression, highlighting its role in muscle cell differentiation.
View Article and Find Full Text PDF

VEGF-targeting anti-angiogenic drugs have enabled significant advances in cancer therapy. However, acquired resistance to VEGF-targeting drugs occurs, leading to disease progression. How tumors become the resistance remains fully uncertain.

View Article and Find Full Text PDF

A DGpYMP peptide mimetic of tyrosine(608)-phosphorylated insulin receptor substrate-1 (IRS-1), named Cblin, was previously shown to significantly inhibit Cbl-b-mediated IRS-1 ubiquitination. In the present study, we developed N-myristoylated Cblin and investigated whether it was effective in preventing glucocorticoid-induced muscle atrophy. Using HEK293 cells overexpressing Cbl-b, IRS-1 and ubiquitin, we showed that the 50% inhibitory concentrations of Cbl-b-mediated IRS-1 ubiquitination by N-myristoylated Cblin and Cblin were 30 and 120 μM, respectively.

View Article and Find Full Text PDF

Obesity causes type 2 diabetes, atherosclerosis and cardiovascular diseases by inducing systemic insulin resistance. It is now recognized that obesity is related to chronic low-grade inflammation in adipose tissue. Specifically, activated immune cells infiltrate adipose tissue and cause inflammation.

View Article and Find Full Text PDF

Background. Unloading stress induces skeletal muscle atrophy. We have reported that Cbl-b ubiquitin ligase is a master regulator of unloading-associated muscle atrophy.

View Article and Find Full Text PDF
Article Synopsis
  • * The study investigated the effects of chronic VEGF inhibition on human colorectal cancer (CRC) cells by using anti-VEGF antibodies and knocking out the Vegf gene, revealing increased resistance to apoptosis and enhanced spheroid formation.
  • * Results showed that the resistance to cell death and other aggressive behaviors could be influenced by the activation of compensatory pathways involving other VEGF family members, which could be mitigated by blocking VEGF receptors or reducing hypoxia-inducible factor-1α levels.
View Article and Find Full Text PDF

We previously reported the potential involvement of casitas B-cell lymphoma-b (Cbl-b) in aging-related murine insulin resistance. Because obesity also induces macrophage recruitment into adipose tissue, we elucidated here the role of Cbl-b in obesity-related insulin resistance. Cbl-b(+/+) and Cbl-b(-/-) mice were fed a high-fat diet (HFD) and then examined for obesity-related changes in insulin signaling.

View Article and Find Full Text PDF

Skeletal muscle is one of the most sensitive tissues to mechanical loading, and unloading inhibits the regeneration potential of skeletal muscle after injury. This study was designed to elucidate the specific effects of unloading stress on the function of immunocytes during muscle regeneration after injury. We examined immunocyte infiltration and muscle regeneration in cardiotoxin (CTX)-injected soleus muscles of tail-suspended (TS) mice.

View Article and Find Full Text PDF

In this study, we examined the effects of IL-18 deficiency on behaviors and gene expression profiles in 6 brain regions. IL-18(-/-) mice reduced depressive-like behavior and changed gene expressions predominantly in the amygdala compared with wild-type mice. Pathway analysis of the differentially expressed genes ranked behavior as the top-scored biological function.

View Article and Find Full Text PDF

Caloric restriction (CR) is an effective method for prevention of age-associated diseases as well as overweight and obesity; however, there is controversy regarding the effects of dieting regimens on behavior. In this study, we investigated two different dieting regimens: repeated fasting and refeeding (RFR) and daily feeding of half the amount of food consumed by RFR mice (CR). CR and RFR mice had an approximate 20% reduction in food intake compared with control mice.

View Article and Find Full Text PDF

Background: NADPH oxidase 1 (Nox1) is preferentially expressed in the colon, but its functional role is not fully understood. This study was designed to elucidate a potential role of Nox1 in inflammation of the colon.

Methods: Superoxide production by T84 cells was measured by the cytochrome c method.

View Article and Find Full Text PDF

The tra2beta gene encoding an alternative splicing regulator, transformer 2-beta (Tra2beta), generates five alternative splice variant transcripts (tra2beta1-5). Functionally active, full-length Tra2beta is encoded by tra2beta1 isoform. Expression and physiological significance of the other isoforms, particularly tra2beta4, are not fully understood.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) have been suggested to regulate receptor activator of nuclear factor-kappaB ligand (RANKL)-stimulated osteoclast differentiation. Stimulation of wild-type mouse bone marrow monocyte/macrophage lineage (BMM) cells by RANKL down-regulated NADPH oxidase 2 (Nox2) mRNA expression by half. RANKL reciprocally increased Nox1 mRNA levels and newly induced Nox4 transcript expression.

View Article and Find Full Text PDF