Publications by authors named "Shigesada Higuchi"

Uracil-DNA glycosylases (UDGs) excise uracil from DNA by catalyzing the N-glycosidic bond hydrolysis. Here we report the first crystal structures of an archaeal UDG (stoUDG). Compared with other UDGs, stoUDG has a different structure of the leucine-intercalation loop, which is important for DNA binding.

View Article and Find Full Text PDF

Uracil-DNA glycosylase (UDG) specifically removes uracil from DNA by catalyzing hydrolysis of the N-glycosidic bond, thereby initiating the base-excision repair pathway. Although a number of UDG structures have been determined, the structure of archaeal UDG remains unknown. In this study, a deletion mutant of UDG isolated from Sulfolobus tokodaii strain 7 (stoUDGΔ) and stoUDGΔ complexed with uracil were crystallized and analyzed by X-ray crystallography.

View Article and Find Full Text PDF

Proliferating cell nuclear antigen (PCNA) is a key protein that orchestrates the arrangement of DNA-processing proteins on DNA during DNA metabolism. In crenarchaea, PCNA forms a heterotrimer (PCNA123) consisting of PCNA1, PCNA2, and PCNA3, while in most eukaryotes and many archaea PCNAs form a homotrimer. Interestingly, unique oligomeric PCNAs from Sulfolobus tokodaii were reported in which PCNA2 and PCNA3 form a heterotrimer without PCNA1.

View Article and Find Full Text PDF

Crenarchaeal PCNA is known to consist of three subunits (PCNA1, PCNA2 and PCNA3) that form a heterotrimer (PCNA123). Recently, another heterotrimeric PCNA composed of only PCNA2 and PCNA3 was identified in Sulfolobus tokodaii strain 7 (stoPCNAs). In this study, the purified stoPCNA2-stoPCNA3 complex was crystallized by hanging-drop vapour diffusion.

View Article and Find Full Text PDF

In crotaline venoms, angiotensin-converting enzyme inhibitors [ACEIs, also known as bradykinin potentiating peptides (BPPs)], are products of a gene coding for an ACEI/BPP-C-type natriuretic peptide (CNP) precursor. In the genes from Bothrops jararaca and Gloydius blomhoffii, ACEI/BPP sequences are repeated. Sequencing of a cDNA clone from venom glands of Crotalus durissus collilineatus showed that two ACEIs/BPPs are located together at the N-terminus, but without repeats.

View Article and Find Full Text PDF

The major lethal toxins present in the venoms of the red-headed krait, Bungarus flaviceps, and the Malayan krait, Bungarus candidus, have both been purified. Each consists of two polypeptide chains, A and B, joined by a disulfide bond. In the present study, primary structures of these toxins were determined by Edman degradation and by nucleotide sequencing of the cDNA clones.

View Article and Find Full Text PDF

Snake venom is known to contain an abundance of enzyme isoforms, and various disorders associated with envenomation have been ascribed partially to their diversified functions. Crude venom of Bothrops jararaca was subjected to conventional two-dimensional SDS-PAGE, followed by immunoblot analysis using an antiserum raised against KN-BJ 2, a serine proteinase previously isolated from this venom. A number of immunoreactive proteins with comparable molecular masses and different pIs emerged, implying the venom contains yet-unknown serine proteinases.

View Article and Find Full Text PDF

In order to obtain cDNA clones coding for CYP4 proteins in frog Xenopus laevis, degenerate primers were designed utilizing the conserved sequences of known CYP4s and were used to amplify partial cDNA fragments from liver mRNA. Five new CYP genes were identified. Three of these genes, XL-1, -2 and -3, were assigned to the CYP4T subfamily found previously in fish and amphibians.

View Article and Find Full Text PDF

Bothrops protease A (BPA) is a serine peptidase isolated from the venom of Bothrops jararaca. Unlike many venom enzymes, it is stable at pHs between 3 and 9 and resists heating at 86 degrees C for 10 min. Mature snake venom serine peptidases of the chymotrypsin family are in general glycoproteins composed of around 232 amino acids and their molecular masses vary between 25 and 40 kDa.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) family of transcription factors. Although this receptor has been known to mediate the toxic effects of environmental pollutants, its physiological functions remain elusive. Here, we describe the isolation and expression pattern of the Xenopus AHR gene.

View Article and Find Full Text PDF