Publications by authors named "Shigeru Takami"

Although several lines of evidence have suggested that sex steroids influence olfaction, little is known about the cellular basis of steroid-metabolizing enzymes in the olfactory system. Thus, we aimed to examine gene expression and immunolocalization of four sex steroid-metabolizing enzymes in the olfactory mucosa (OM) of albino rats; steroid side chain-cleaving enzyme (P450scc), 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD-1), 17β-HSD type 2 (17β-HSD-2), and aromatase. P450scc is known to catalyze conversion from cholesterol to pregnenolone.

View Article and Find Full Text PDF

The vomeronasal organ (VNO) of 5-month-old fetuses was examined immunohistochemically by the use of an antiserum to protein gene product 9.5 (PGP). The purpose was to identify if the human fetal VNO is lined by neuroepithelium.

View Article and Find Full Text PDF

To determine the morphological basis for the neurotrophic effects of brain-derived neurotrophic factor (BDNF) in the primary olfactory pathway (POP), tyrosine kinase receptor B (TrkB), a membrane-bound receptor for BDNF, was identified and localized in axons of olfactory receptor cells (ORC) of neonatal rat olfactory mucosa using immuno-histochemical and -cytochemical techniques. Initially, the immunospecificity of an anti-TrkB antibody that had been used as a specific antibody for full-length TrkB was confirmed in the olfactory mucosa. Then, a combination of a reduced osmium-LR-White and post-embedding immunogold technique was applied to ORC axons in the lamina propria just beneath the olfactory epithelium.

View Article and Find Full Text PDF

Physiologic studies conducted in rats have demonstrated that afferent fibers of the gastric branch of the vagus nerve increase their firing rate with the intragastric administration of the amino acid glutamate, and the increased firing rate is blocked by the depletion of serotonin (5-HT), administration of the blocker for the serotonin type-3 receptor (SR3), or nitric oxide synthase (NOS). To understand glutamate signaling in the gastric mucosa at the cellular level, we have been studying rats as an animal model using anatomic and immunohistochemical procedures. Our results have indicated that 5-HT-immunoreactive (ir) cells are present in the superficial part of the gastric mucosal epithelium and in the base of the fundic glands, whereas immunoreactivity for SR3 is localized in the neck and its vicinity of the fundic glands.

View Article and Find Full Text PDF

The vomeronasal organ comprises a pair of narrow tubes in the mammalian nasal septum, serving as a chemosensory system for pheromones. We examined the expression and localization of water channel aquaporins (AQPs) in the rat vomeronasal organ. AQP1 was localized in blood vessels, being particularly abundant in cavernous tissues of the nonsensory mucosa.

View Article and Find Full Text PDF

Binding sites of Griffonia simplicifolia I-B4 isolectin (GS-I-B4), which recognizes terminal alpha-galactose residues of glycoconjugates, were examined in the juxtaluminal region of the rat vomeronasal sensory epithelium and its associated glands of the vomeronasal organ, using a lectin cytochemical technique. Lowicryl K4M-embedded ultra-thin sections, which were treated successively with biotinylated GS-I-B4 and streptavidin-conjugated 10 nm colloidal gold particles, were observed under a transmission electron microscope. Colloidal gold particles, which reflect the presence of terminal alpha-galactose-containing glycoconjugates, were present in vomeronasal receptor neurons in the sensory epithelium and secretory granules of acinar cells of associated glands of the epithelium.

View Article and Find Full Text PDF

In many terrestrial tetrapodes, a pair of vomeronasal organs (VNOs), which are chemosensory apparatuses, are situated at the base of the nasal septum in the anterior nasal cavity. The purposes of this review are to summarize comparative neuroanatomy and to introduce recent progress in neurobiological studies of the VNO. Five types of VNOs can be identifiable in terms of anatomical organization; snakes possess the most complex one.

View Article and Find Full Text PDF

The nervous cells in the brain and the peripheral nerves are isolated from the external environment by the blood-brain, blood-cerebrospinal fluid and blood-nerve barriers. The glucose transporter GLUT1 mediates the specific transfer of glucose across these barriers. The olfactory system is unique in that its sensory cells, olfactory receptor neurons, are embedded in the nasal olfactory epithelium and send their axons directly to the olfactory bulb of the brain.

View Article and Find Full Text PDF

The vomeronasal sensory epithelium of a crotaline snake, Trimeresurus flavoviridis, was shown to consist of a superficial supporting cell layer and an underlying sensory cell layer composed of columns of sensory cells. The supporting cell layer consists of both supporting cells and dendrites of the underlying sensory neurons. The apical regions of sensory cell dendrites contain numerous microtubules, many elongated mitochondria, centrioles, and electron-dense bodies.

View Article and Find Full Text PDF