Since aortic valve stenosis (AVS) is the most frequent and serious valvular heart disease in the elderly, and is accompanied by irreversible valve calcification, medicinal prevention of AVS is important. Although we recently demonstrated that human aortic valve interstitial cells (HAVICs) obtained from patients with AVS were highly sensitive to ectopic calcification stimulation, the cell types contributing to calcification are unknown. We aimed to immunocytochemically characterize HAVICs and identify their contribution to valve calcification.
View Article and Find Full Text PDFIn the original publication of the article, part of Fig. 1 was published incorrectly.
View Article and Find Full Text PDFRecently, we confirmed that in human aortic valve interstitial cells (HAVICs) isolated from patients with aortic valve stenosis (AVS), calcification is induced in high inorganic phosphate (high-Pi) medium by warfarin (WFN). Because WFN is known as a vitamin K antagonist, reducing the formation of blood clots by vitamin K cycle, we hypothesized that vitamin K regulates WFN-induced HAVIC calcification. Here, we sought to determine whether WFN-induced HAVIC calcification in high-Pi medium is inhibited by menaquinone-4 (MK-4), the most common form of vitamin K in animals.
View Article and Find Full Text PDFWarfarin, a vitamin K antagonist, is the most common anticoagulant used to prevent thromboembolisms associated with atrial fibrillation or following valvular surgery. Although several studies have revealed that long-term warfarin use accelerates aortic valve calcification and the development of aortic stenosis (AS), the detailed mechanism for this phenomenon remains unclear. Therefore, our aim was twofold: to establish the conditions for warfarin-induced calcification of human aortic valve interstitial cells (HAVICs) using high-inorganic phosphate (Pi) conditions and to investigate the underlying mechanism.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have been used to elucidate the pathogenesis of numerous diseases. Our recent study showed that MSCs may conduce to the ossification of spinal ligaments. Stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) regulate MSC migration.
View Article and Find Full Text PDFCalcified aortic valve stenosis (CAS) is a common heart valve disease in elderly people, and is mostly accompanied by ectopic valve calcification. We recently demonstrated that tumor necrosis factor-α (TNF-α) induces calcification of human aortic valve interstitial cells (HAVICs) obtained from CAS patients. In this study, we investigated the role of matrix Gla protein (MGP), a known calcification inhibitor that antagonizes bone morphogenetic protein 2 (BMP2) in TNF-α-induced calcification of HAVICs.
View Article and Find Full Text PDFAn abnormally high serum phosphate level induces calcific aortic stenosis (CAS), which is characterized by ectopic valve calcification and stenosis of the orifice area. Inhibition of ectopic calcification is a critical function of any internal medical therapy for CAS disease. The aim of the present study was to investigate the inhibitory effects of several derivatives of evocarpine, methanolic extracts from the fruits of Evodia rutaecarpa Bentham (Japanese name: Go-Shu-Yu) on the high phosphate-induced calcification of human aortic valve interstitial cells (HAVICs) obtained from patients with CAS.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) isolated from spinal ligaments with ectopic ossification have a propensity toward the osteogenic lineage. To explore epigenetic control of the osteogenic features of MSCs, we treated MSCs obtained from the spinal ligaments of ossification of yellow ligament (OYL) patients and non-OYL patients with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5AdC). We compared the non-OYL groups (untreated and treated with 5AdC) with the OYL groups (untreated and treated with 5AdC) by genome-wide microarray analysis.
View Article and Find Full Text PDFEnhancement of cardiac differentiation is critical to stem cell transplantation therapy for severe ischemic heart disease. The aim of this study was to investigate whether several derivatives of tryptanthrin (1), extracted from the medicinal plant Polygonum tinctorium, induce the differentiation of P19CL6 mouse embryonal carcinoma cells into beating cardiomyocyte-like cells. P19CL6 cells were cultured in α-MEM supplemented with 10% FBS including a test compound or vehicle.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2013
Although various osteogenic inducers contribute to the calcification of human aortic valve interstitial cells, the cellular origin of calcification remains unclear. We immunohistochemically investigated the cellular origin of valve calcification using enzymatically isolated cells from both calcified and non-calcified human aortic valve specimens. CD73-, 90-, and 105-positive and CD45-negative mesenchymal stem-like cells (MSLCs) were isolated from both types of valve specimens using fluorescence-activated cell sorting.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have been isolated from various tissues and used for elucidating the pathogenesis of numerous diseases. In our previous in vitro study, we showed the existence of MSCs in human spinal ligaments and hypothesized that these MSCs contributed to the pathogenesis of ossification of spinal ligaments. The purpose of this study was to use immunohistochemical techniques to analyze the localization of MSCs in ossified human spinal ligaments in situ.
View Article and Find Full Text PDFPreviously, we showed that in adult rat cardiomyocytes, nitric oxide (NO) donors stimulate mitochondrial cGMP production, followed by cytochrome c release, independently of the mitochondrial permeable transition pore. We investigated whether mitochondrial cGMP-induced cytochrome c release from cardiac mitochondria is Ca(2+)-sensitive. Mitochondria and primary cultured cardiomyocytes were prepared from left ventricles of male Wistar rats.
View Article and Find Full Text PDFPurpose: The anterior cruciate ligament (ACL) rarely heals spontaneously after rupture. Mesenchymal stem cells (MSCs) contribute to healing in various tissues, therefore, they may also have a key role in healing after ACL rupture. The purpose of this study was to investigate the properties of MSCs in ruptured ACLs.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2012
Mesenchymal stem cells (MSCs) have a fibroblast-like morphology, multilineage potential, long-term viability and capacity for self-renewal. While several articles describe isolating MSCs from various human tissues, there are no reports of isolating MSCs from human spinal ligaments, and their localization in situ. If MSCs are found in human spinal ligaments, they could be used to investigate hypertrophy or ossification of spinal ligaments.
View Article and Find Full Text PDFWhen cardiac valve stenosis is accompanied by calcification, symptoms and prognosis become much worse and may cause sudden cardiac death. The prevalence of this disease has increased with the rapidly aging in Japanese society. It has recently been revealed that several genes which relate to physiological ossification and calcification play important roles in this process.
View Article and Find Full Text PDFObjectives: To assess whether therapy to achieve both a disease activity score in 28 joints (DAS28) less than 2.6 and matrix metalloproteinase (MMP) 3 normalisation offers better outcomes than either target alone in early rheumatoid arthritis (RA) at 56 weeks: Treating to Twin Targets (T-4) Study.
Methods: 243 early RA patients were randomly allocated to one of four strategy groups: routine care (R group; n=62); DAS28-driven therapy (D group; n=60); MMP-3-driven therapy (M group; n=60); or both DAS28 and MMP-3-driven therapy group (twin; T group; n=61).
Study Design: We categorized the four types of ossification of the posterior longitudinal ligament (OPLL) of the cervical spine into two groups. We biochemically investigated the genetic differences in the osteogenic differentiation potency between the two groups.
Objective: To investigate the genetic differences in the osteogenic differentiation potency according to the OPLL classification.
Ossification of the posterior longitudinal ligament of the spine (OPLL) is characterized by ectopic bone formation in the spinal ligaments. We previously reported that P2 purinoceptor Y1 (P2Y1) expression is elevated in the spinal ligament cells of OPLL patients, but the role of P2Y1 in the spinal ligament calcification process is unknown. To verify the hypothesis that P2Y1 expression causes ossification of the spinal ligaments, we forced expression of P2Y1 in spinal ligament cells obtained from OPLL and non-OPLL patients using a cytomegaloviral vector.
View Article and Find Full Text PDFCalcific aortic valve stenosis (CAS) is the most frequent heart valve disease in the elderly, accompanied by valve calcification. Tumor necrosis factor-α (TNF-α), a pleiotropic cytokine secreted mainly from macrophages, has been detected in human calcified valves. However, the role of TNF-α in valve calcification remains unclear.
View Article and Find Full Text PDFAlthough aging is well established as an important risk factor for aortic stenosis, the mechanism of age-related aortic valve calcification is yet unknown. Here, we investigated this mechanism in tissue and cellular levels using middle-aged rats. Aortic valve specimens were obtained by dissecting from 9-week-old (young) and 30-week-old (aged) male Wistar rats.
View Article and Find Full Text PDFReactivation of hepatitis B involves the reappearance of active necroinflammatory liver disease after an inactive hepatitis B surface antigen (HBsAg) carrier state or resolved hepatitis B, occurring during or after immunosuppression therapy or chemotherapy. We prospectively investigated the reactivation rate for hepatitis B virus (HBV) DNA replication in cases of rheumatoid arthritis (RA) with resolved hepatitis B. HBV markers were evaluated in 428 RA patients.
View Article and Find Full Text PDFIt has been reported that resveratrol (trans-3,5,4'-trihydroxystilbene) from Vitis plants has various cardioprotective effects. Vitis plants also include various resveratrol tetramers. The aim of our study is to clarify the pharmacological properties of resveratrol tetramers.
View Article and Find Full Text PDF