Publications by authors named "Shigeru Akasofu"

Tau deposition in the brain is a pathological hallmark of many neurodegenerative disorders, including Alzheimer's disease (AD). During the course of these tauopathies, tau spreads throughout the brain via synaptically-connected pathways. Such propagation of pathology is thought to be mediated by tau species ("seeds") containing the microtubule binding region (MTBR) composed of either three repeat (3R) or four repeat (4R) isoforms.

View Article and Find Full Text PDF

Study Objectives: To present results from in vivo studies underlying the preclinical development of lemborexant (E2006), a novel dual orexin (hypocretin) receptor antagonist for sleep/wake regulation.

Methods: Rodent (wild-type rats and wild-type and orexin neuron-deficient [orexin/ataxin-3 Tg/+] mice) studies were performed to evaluate the effects of single-dose oral lemborexant (1-300 mg/kg) on orexin-induced increases in plasma adrenocorticotropic hormone (ACTH), locomotor activity, vigilance state measures (wakefulness, nonrapid eye movement [non-REM] sleep, rapid eye movement [REM] sleep), ethanol-induced anesthesia, and motor coordination, and the effects of multiple-dose oral lemborexant (30 mg/kg) on vigilance state measures. Active comparators were almorexant and zolpidem.

View Article and Find Full Text PDF

In tauopathies, a neural microtubule-associated protein tau (MAPT) is abnormally aggregated and forms neurofibrillary tangle. Therefore, inhibition of the tau aggregation is one of the key approaches for the treatment of these diseases. Here, we have identified a novel tau aggregation inhibitor, PE859.

View Article and Find Full Text PDF

Long-lasting membrane depolarization in cerebral ischemia causes neurotoxicity via increases of intracellular sodium concentration ([Na+]i) and calcium concentration ([Ca2+]i). Donepezil has been shown to exert neuroprotective effects in an oxygen-glucose deprivation model. In the present study, we examined the effect of donepezil on depolarization-induced neuronal cell injury resulting from prolonged opening of Na+ channels with veratridine in rat primary-cultured cortical neurons.

View Article and Find Full Text PDF

Donepezil has a neuroprotective effect against oxygen-glucose deprivation injury and glutamate toxicity in cultured cortical neurons. In this study, we further characterized the neuroprotective properties of donepezil in rat cortical cell cultures using glutamate receptor-specific agonists (N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) and kainate). Pretreatment with donepezil (1 microM) for 12 h significantly decreased the lactate dehydrogenase (LDH) release in response to NMDA (100 microM) by 43.

View Article and Find Full Text PDF

Donepezil, a potent acetylcholinesterase (AChE) inhibitor used for the treatment of Alzheimer's disease (AD), is thought to have a neuroprotective effect in AD patients. Because a deficit in cholinergic neurotransmission is a major feature in AD, and amyloid-beta (Abeta) accumulation has been proposed as a possible causative phenomenon, we were interested to examine the effect of donepezil on Abeta(1-40) induced neurotoxicity in primary cultures of rat septal neurons. Using immunohistochemical staining, almost all the neurons were found to be positive for vesicular acetylcholine transporter (VAChT) in these septal cultures.

View Article and Find Full Text PDF

Donepezil hydrochloride (donepezil: (+/-)-2-[(1-benzylpiperidin-4-yl)methyl]-5,6-dimethoxy-indan-1-one monohydrochloride) is a potent acetylcholinesterase inhibitor used for treatment of Alzheimer's disease. Although acetylcholinesterase inhibitors are used as a symptomatic treatment for Alzheimer's disease, it is not clear whether or not they are effective against progressive degeneration of neuronal cells. In this study, we investigated the neuroprotective effects of donepezil and other acetylcholinesterase inhibitors used for treatment of Alzheimer's disease, i.

View Article and Find Full Text PDF