Our understanding of type 2 immunity has undergone a substantial transformation in recent years, revealing previously unknown functions. Beyond its canonical role in defence against parasitic helminth infections, type 2 immunity safeguards the host through additional mechanisms, including the suppression of excessive type 1 immune responses, regulation of tissue repair and maintenance of adipose tissue homeostasis. However, unlike type 1 immune responses, type 2 immunity is perceived as a potential promoter of tumorigenesis.
View Article and Find Full Text PDFBeing overweight exacerbates various metabolic diseases, necessitating the identification of target molecules for obesity control. In the current study, we investigated common physiological features related to metabolism in mice with low weight gain: (1) G protein-coupled receptor, family C, group 5, member B-knockout; (2) gastric inhibitory polypeptide receptor-knockout; and (3) Iroquois-related homeobox 3-knockout. Moreover, we explored genes involved in metabolism by analyzing differentially expressed genes (DEGs) between low-weight gain mice and the respective wild-type control mice.
View Article and Find Full Text PDFGroup 2 innate lymphoid cells (ILC2s) elicit ostensibly paradoxical responses, such as tissue repair and stimulation of tumorigenesis. Given emerging evidence that ILC2s also contribute to cancer immunosurveillance, we reassess the role of ILC2s in tumorigenesis and discuss recent insights into their tumoricidal potential.
View Article and Find Full Text PDFGroup 2 innate lymphoid cells (ILC2s) were initially identified as a new type of lymphocytes that produce vigorous amounts of type 2 cytokines in adipose tissue. Subsequent studies revealed that ILC2s are present not only in adipose tissue but also in various other tissues such as lung and skin. ILC2s are generally recognized as tissue-resident immune cells that regulate tissue homeostasis.
View Article and Find Full Text PDFPemphigus vulgaris is an autoimmune blistering disease caused by IgG targeting desmoglein 3 (Dsg3), an adhesion molecule of keratinocytes. Anti-Dsg3 IgG production is prevented in healthy individuals, but it is unclear how Dsg3-specific B cells are regulated. To clarify the immunological condition regulating Dsg3-specific B cells, a pathogenic anti-Dsg3 Ig (AK23) knock-in mouse was generated.
View Article and Find Full Text PDFInnate lymphoid cells (ILCs) are mostly tissue resident lymphocytes that are preferentially enriched in barrier tissues such as the skin. Although they lack the expression of somatically rearranged antigen receptors present on T and B cells, ILCs partake in multiple immune pathways by regulating tissue inflammation and potentiating adaptive immunity. Emerging evidence indicates that ILCs play a critical role in the control of melanoma, a type of skin malignancy thought to trigger immunity mediated mainly by adaptive immune responses.
View Article and Find Full Text PDFThree-dimensional (3D) tumor spheroids have the potential to bridge the gap between two-dimensional (2D) monolayer tumor cell cultures and solid tumors with which they share a significant degree of similarity. However, the progression of solid tumors is often influenced by the dynamic and reciprocal interactions between tumor and immune cells. Here we present a 3D tumor spheroid-based model that might shed new light on understanding the mechanisms of tumor and immune cell interactions.
View Article and Find Full Text PDFTo prevent infections associated with medical implants, various antimicrobial silver-coated implant materials have been developed. However, these materials do not always provide consistent antibacterial effects in vivo despite having dramatic antibacterial effects in vitro, probably because the antibacterial effects involve silver-ion-mediated reactive oxygen species generation. Additionally, the silver application process often requires extremely high temperatures, which damage non-metal implant materials.
View Article and Find Full Text PDFADP-ribosylation factor (Arf) family consisting of six family members, Arf1-Arf6, belongs to Ras superfamily and orchestrates vesicle trafficking under the control of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins. It is well established that brefeldin A, a potent inhibitor of ArfGEFs, blocks cytokine secretion from activated T cells, suggesting that the Arf pathway plays important roles in T cell functions. In this study, because Arf1 and Arf6 are the best-characterized members among Arf family, we established T lineage-specific Arf1-deficient, Arf6-deficient, and Arf1/6 double-deficient mice to understand physiological roles of the Arf pathway in the immune system.
View Article and Find Full Text PDF, a protozoan parasite in the lumen of the human large intestine, occasionally spreads to the liver and induces amebic liver abscesses (ALAs). Upon infection with , high levels of type 2 cytokines are induced in the liver early after infection. However, the sources and functions of these initial type 2 cytokines in ALA formation remain unclear.
View Article and Find Full Text PDFGroup 2 innate lymphoid cells (ILC2s) are abundant in non-lymphoid tissues and increase following infectious and inflammatory insults. In solid tumors, however, ILC2s constitute a relatively small proportion of immune cells. Here, we show, using melanoma as a model, that while the IL-33/IL C2/eosinophil axis suppresses tumor growth, tumor-derived lactate attenuates the function and survival of ILC2s.
View Article and Find Full Text PDFComplex interactions between immune cells are an important component in the induction of obesity. Here, we show that Il2rgRag2 mice lacking all lymphocytes are resistant to diet-induced obesity. Transplantation of bone marrow cells from Rag2 mice, which lack only acquired immune cells, into Il2rgRag2 mice abolishes this resistance, indicating a role for innate lymphoid cells (ILCs) in this process.
View Article and Find Full Text PDFThe immune system plays a dual role in cancer. It conveys protective immunity but also facilitates malignant progression, either by sculpting tumor immunogenicity or by creating a microenvironment that can stimulate tumor outgrowth or aid in a subsequent metastatic cascade. Innate lymphoid cells (ILCs) embody this functional heterogeneity, although the nature of their responses in cancer has only recently begun to be unveiled.
View Article and Find Full Text PDFThe advance of immunotherapies has revolutionized the treatment of cancer patients. Mostly agents modulating the adaptive immune system are currently used. More recently, attempts to stimulate the innate immune system are being promoted for clinical evaluation.
View Article and Find Full Text PDFGroup 2 innate lymphoid cells (ILC2s) play critical roles in the induction of type 2 inflammation, response to parasite infection, metabolic homeostasis, and tissue repair. These multifunctional roles of ILC2s are tightly controlled by complex regulatory systems in the local microenvironment, the disruption of which may cause various health problems. This review summarizes up-to-date knowledge regarding positive and negative regulators for ILC2s based on their function and signaling pathways, including activating cytokines (IL-33, IL-25; MAPK, NF-κB pathways), co-stimulatory cytokines (IL-2, IL-7, IL-9, TSLP; STAT5, IL-4; STAT6, TNF superfamily; MAPK, NF-κB pathways), suppressive cytokines (type1 IFNs, IFN-γ, IL-27; STAT1, IL-10, TGF-β), transdifferentiation cytokines (IL-12; STAT4, IL-1β, IL-18), lipid mediators (LTC4, LTD4, LTE4, PGD2; Ca -NFAT pathways, PGE2, PGI2; AC/cAMP/PKA pathways, LXA4, LTB4), neuropeptides (NMU; Ca -NFAT, MAPK pathways, VIP, CGRP, catecholamine, acetylcholine), sex hormones (androgen, estrogen), nutrients (butyrate; HDAC inhibitors, vitamins), and cell-to-cell interactions (ICOSL-ICOS; STAT5, B7-H6-NKp30, E-cadherin-KLRG1).
View Article and Find Full Text PDFInnate lymphoid cells (ILCs) are lymphocytes that do not express the type of diversified antigen receptors expressed on T cells and B cells. ILCs are largely tissue-resident cells and are deeply integrated into the fabric of tissues. The discovery and investigation of ILCs over the past decade has changed our perception of immune regulation and how the immune system contributes to the maintenance of tissue homeostasis.
View Article and Find Full Text PDFGroup 2 innate lymphoid cells (ILC2s) are derived from common lymphoid progenitors (CLPs) via several specific precursors, and the transcription factors essential for ILC2 differentiation have been extensively studied. However, the external factors regulating commitment to the ILC lineage as well as the sites and stromal cells that constitute the optimal microenvironment for ILC2-specific differentiation are not fully defined. In this study, we demonstrate that three key external factors, the concentration of interleukin 7 (IL-7) and strength and duration of Notch signaling, coordinately determine the fate of CLP toward the T, B, or ILC lineage.
View Article and Find Full Text PDFMacrolides are used to treat various inflammatory diseases owing to their immunomodulatory properties; however, little is known about their precise mechanism of action. In this study, we investigated the functional significance of the expansion of myeloid-derived suppressor cell (MDSC)-like CD11b+Gr-1+ cells in response to the macrolide antibiotic clarithromycin (CAM) in mouse models of shock and post-influenza pneumococcal pneumonia as well as in humans. Intraperitoneal administration of CAM markedly expanded splenic and lung CD11b+Gr-1+ cell populations in naïve mice.
View Article and Find Full Text PDFInnate lymphoid cells (ILCs) fulfill important protective and reparative functions, and have thus been implicated in the maintenance of tissue homeostasis. Dysregulation of their activation is associated with several autoimmune and inflammatory diseases. The current literature on the role of ILCs in cancer is limited and our knowledge is therefore incomplete.
View Article and Find Full Text PDFAsthma is a complex heterogeneous disease of the airways characterized by lung inflammation, airway hyperreactivity (AHR), mucus overproduction, and remodeling of the airways. Group 2 innate lymphoid cells (ILC2s) play a crucial role in the initiation and propagation of type 2 inflammatory programs in allergic asthma models, independent of adaptive immunity. In response to allergen, helminths or viral infection, damaged airway epithelial cells secrete IL-33, IL-25, and thymic stromal lymphopoietin (TSLP), which activate ILC2s to produce type 2 cytokines such as IL-5, IL-13, and IL-9.
View Article and Find Full Text PDF