Publications by authors named "Shigeo Kobayashi"

Fatigue and pain are disabling symptoms in patients with neuromyelitis optica spectrum disorder (NMOSD). The Modified Fatigue Impact Scale (MFIS) has not yet been validated in patients with NMOSD, and anti-interleukin-6 (IL-6) receptor antibody was reported to decrease pain and fatigue in patients with NMOSD. The aim of this study was to validate MFIS and to investigate the relationships among fatigue, pain and serum IL-6 levels in patients with NMOSD.

View Article and Find Full Text PDF

Background: The emedastine patch was developed in Japan as the first transdermal drug delivery system of emedastine difumarate for allergic rhinitis.

Methods: A multicenter, randomized, double-blind, placebo-controlled, parallel-group comparison was conducted in patients with seasonal allergic rhinitis. Patients were administered Emedastine patches (4 or 8 mg), placebo, or levocetirizine hydrochloride (5 mg tablet) once daily for 2 weeks (double-dummy technique).

View Article and Find Full Text PDF

Objective: To evaluate the efficacy, safety, and optimum dose of once-daily oxybutynin patch for overactive bladder.

Methods: A randomized double-blind trial was conducted in patients with overactive bladder symptoms for ≥24 weeks, who received an oxybutynin patch (73.5 or 105 mg) or placebo once daily for 8 weeks.

View Article and Find Full Text PDF

Prostaglandin E2 (PGE2) is produced in the brain during infectious/inflammatory diseases, and it mediates acute-phase responses including fever. In the recovery phase of such diseases, PGE2 disappears from the brain through yet unidentified mechanisms. Rat prostaglandin transporter (PGT), which facilitates transmembrane transport of PGE2, might be involved in the clearance of PGE2 from the brain.

View Article and Find Full Text PDF

When skin temperature falls below a set-point, mammals experience "cold in the skin" and exhibit heat-seeking behaviors for error correction. Physiological thermostats should perform the behavioral thermoregulation, and it is important to identify the thermostats. A classical model of the sensory system states that thermoreceptors (e.

View Article and Find Full Text PDF

Objectives: To evaluate the efficacy and safety of once-daily oxybutynin patch therapy for overactive bladder.

Methods: A randomized double-blind trial was carried out in patients with overactive bladder syndrome, who received an oxybutynin patch, propiverine (20 mg) or placebo once daily for 12 weeks. The primary efficacy end-point was the change of the mean daily number of micturitions in week 12.

View Article and Find Full Text PDF

Nuclear factor kappa B (NF-κB) is a transcription factor, which is translocated to the nucleus when activated. Herein, we demonstrate immunohistochemically that electrical, chemical, and thermal stimuli, applied to the skin of mice, all induced nuclear translocation and phosphorylation of NF-κB in dorsal root ganglia (DRG) neurons. The latency of this response was short, with effects observable in as little as 3min following stimulation.

View Article and Find Full Text PDF

The transient receptor potential (TRP) channel family is composed of a wide variety of cation-permeable channels activated polymodally by various stimuli and is implicated in a variety of cellular functions. Recent investigations have revealed that activation of TRP channels is involved not only in nociception and thermosensation but also in thermoregulation and energy metabolism. We investigated the effect of intragastric administration of TRP channel agonists on changes in energy substrate utilization of mice.

View Article and Find Full Text PDF

We have shown that cutaneous cooling-sensitive receptors can work as thermostats of skin temperature against cooling. However, molecule of the thermostat is not known. Here, we studied whether cooling-sensitive TRPM8 channels act as thermostats.

View Article and Find Full Text PDF

Hydrogen peroxide (H(2)O(2)), which is contained in industrial products, is also generated within cells. H(2)O(2) causes pain but it has not been elucidated how it activates sensory neurons in the pain pathway. Here we show that transient receptor potential ankyrin 1 (TRPA1), expressed by sensory neurons in the pain pathway, is a receptor for H(2)O(2).

View Article and Find Full Text PDF

When ambient temperature is decreased in mammals, autonomic and behavioral heat-gain responses occur to maintain their core temperatures. However, what molecules in cutaneous sensory nerve endings mediate cooling-induced responses is unclear. Recently, transient receptor potential melastatin-8 (TRPM8) has been identified in cell bodies of sensory neurons as low-temperature and menthol-activated cation channel.

View Article and Find Full Text PDF

TRPM8 and TRPA1, members of the transient receptor potential (TRP) channel family, are candidates for cooling-activated receptors. It is accepted that TRPM8 responds to moderate cooling, although it is controversial whether TRPA1 responds to deep cooling. Here, using Ca(2+) imaging and/or patch-clamp recordings, we examined the thermal sensitivity of primary cultured dorsal root ganglion (DRG) neurons and mouse TRPA1-expressing human embryonic kidney (HEK) 293 cells.

View Article and Find Full Text PDF

TRPM8 is a member of the melastatin-type transient receptor potential ion channel family. Activation by cold or by agonists (menthol, icilin) induces a transient rise in intracellular free calcium concentration ([Ca(2+)](i)). Our previous study demonstrated that Ca(2+)-permeable cation channels play a role in IGF-1-induced secretion of chromogranin A in human neuroendocrine tumor (NET) cell line BON [Mergler et al.

View Article and Find Full Text PDF

All phases of lipopolysaccharide (LPS)-induced fever are mediated by prostaglandin (PG) E2. It is known that the second febrile phase (which starts at approximately 1.5 h post-LPS) and subsequent phases are mediated by PGE2 that originated in endotheliocytes and perivascular cells of the brain.

View Article and Find Full Text PDF

In 1950, Hensel and Zotterman reported cooling-induced desensitization of cold receptors by extracellular discharge recordings of cold fibers. Since then, however, its intracellular mechanism has remained unresolved. We studied menthol-induced desensitization of cold/menthol receptors (TRPM8, transient receptor potential M8) expressed in HEK cells.

View Article and Find Full Text PDF

Fever is induced by a neuronal mechanism in the brain. Prostaglandin (PG) E2 acts as a pyrogenic mediator in the preoptic area (POA) probably through the EP3 subtype of PGE receptor expressed on GABAergic neurons, and this PGE2 action triggers neuronal pathways for sympathetic thermogenesis in peripheral effector organs including brown adipose tissue (BAT). To explore pyrogenic efferent pathways from the POA, we determined projection targets of EP3 receptor-expressing POA neurons with a special focus on rat hypothalamic regions including the dorsomedial hypothalamic nucleus (DMH), which is known as a center for autonomic responses to stress.

View Article and Find Full Text PDF

TRPM8 is a TRP family cation channel which can be activated by cold stimuli or l-menthol. However, TRPM8 protein localization of nerve terminals in sensory organs remains unknown. Here we generated an antibody against TRPM8 and analyzed TRPM8 protein localization in trigeminal ganglia (TG) and in sensory nerve fibers in the tongue.

View Article and Find Full Text PDF

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is highly enriched in excitatory synapses in the CNS and critically involved in synaptic plasticity, learning, and memory. However, the precise temporal and spatial regulation of CaMKII activity in living cells has not been well described, because of a lack of specific methods. We tried to address this by optically detecting the conformational change in CaMKII during activation using fluorescence resonance energy transfer (FRET).

View Article and Find Full Text PDF

The sympathetic nervous system controls various homeostatic conditions, such as blood circulation, body temperature, and energy expenditure, through the regulation of diverse peripheral effector organs. In this system, sympathetic premotor neurons play a crucial role by mediating efferent signals from higher autonomic centers directly to sympathetic preganglionic neurons in the intermediolateral cell column of the spinal cord. The medulla oblongata is thought to subsume many sympathetic premotor neurons, and the rostral ventrolateral medulla (RVLM) has been established to contain the sympathetic premotor neurons responsible for cardiovascular control.

View Article and Find Full Text PDF

Peripheral inflammation signals the brain primarily via blood-borne proinflammatory cytokines, released from activated immune cells. In addition to these cytokines, immune-brain signaling is known to involve another key mediator, prostaglandin E2 (PGE2), the level of which is elevated in the brain during various inflammatory states and which acts to influence the central neuronal activity to evoke some, but not all, of the sickness behavior including fever and the activation of hypothalamo-pituitary-adrenal axis. Studies over the last decade have indicated that brain endothelial cells are the major source of PGE2 under various inflammatory states.

View Article and Find Full Text PDF

Sympathetic premotor neurons directly control sympathetic preganglionic neurons (SPNs) in the intermediolateral cell column (IML) of the thoracic spinal cord, and many of these premotor neurons are localized in the medulla oblongata. The rostral ventrolateral medulla contains premotor neurons controlling the cardiovascular conditions, whereas rostral medullary raphe regions are a candidate source of sympathetic premotor neurons for thermoregulatory functions. Here, we show that these medullary raphe regions contain putative glutamatergic neurons and that these neurons directly control thermoregulatory SPNs.

View Article and Find Full Text PDF

Objectives: To examine whether peripheral burn injury in rats elevates prostaglandin E2 in the central nervous system and to determine where in the central nervous system enzymes responsible for prostaglandin E2 synthesis are expressed.

Design: Prospective controlled animal study.

Setting: University research laboratory.

View Article and Find Full Text PDF

Noxious heat above approximately 45 degrees C applied on cold spots evokes a paradoxical cold sensation by activating cold fibers. It remains unresolved whether cold receptors respond to heat as well, or whether noxious-heat receptors and cold receptors coexist in the same fiber. Recently, noxious heat receptors (TRPV1) and cold receptors (TRPM8) have been cloned.

View Article and Find Full Text PDF