The formation of a functional spindle requires microtubule (MT) nucleation from within the spindle, which depends on augmin. How augmin contributes to MT formation and organization is not known because augmin-dependent MTs have never been specifically visualized. In this paper, we identify augmin-dependent MTs and their connections to other MTs by electron tomography and 3D modeling.
View Article and Find Full Text PDFA high-pressure freezing method was used to observe the ultrastructure of pathogenic yeasts, Cryptococcus neoformans and Exophiala dermatitidis, after freeze-substitution and ultrathin sectioning. The method well preserved the cell structure in its natural state, since the capsule, cell wall, plasma membrane, nucleus, outer and inner nuclear membranes, nuclear pores, nucleolus, mitochondria, mitochondrial membrane and cristae, vacuoles, endoplasmic reticulum, Golgi apparatus, spindle pole body, ribosomes, lipid droplets, microtubules, actin filaments, and glycogen granules were clearly visible. The method was shown to freeze cells as deep as 0.
View Article and Find Full Text PDF