Biochem Biophys Res Commun
March 2003
beta-Amyloid peptide (A beta), a major component of senile plaques, the formation of which is characteristic of Alzheimer's disease (AD), is believed to induce inflammation of the brain mediated by microglia, leading to neuronal cell loss. In this study, we performed an oligonucleotide microarray analysis to investigate the molecular events underlying the A beta-induced activation of macrophages and its specific suppression by the A beta-specific-macrophage-activation inhibitor, RS-1178. Of the approximately 36,000 genes and expressed sequence tags analyzed, eight genes were specifically and significantly upregulated by a treatment with interferon gamma (IFN gamma) and A beta compared to a treatment with IFN gamma alone (p<0.
View Article and Find Full Text PDFbeta-Amyloid peptide (Abeta), a major component of senile plaques, the formation of which is characteristic of Alzheimer's disease (AD), is believed to induce inflammation in the brain leading to cell loss and cognitive decline. Accumulating evidence shows Abeta activates microglia, which play the role of the brain's immune system, and mediates inflammatory responses in the brain. Thus, a compound inhibiting Abeta-induced activation of microglia may lead to a novel therapy for AD.
View Article and Find Full Text PDFBoth excitotoxicity and apoptosis contribute to neuronal loss in various neurodegenerative diseases such as Alzheimer's disease as well as stroke, and a drug inhibiting both types of cell death may lead to practical treatment for these diseases. Post-treatment with troglitazone, a potent and specific activator of peroxisome proliferator-activated receptor (PPAR)-gamma attenuated the cell death of cerebellar granule neurons, triggered by glutamate exposure. The inhibitory effect of troglitazone against glutamate excitotoxicity, in vitro, was observed even when added 2.
View Article and Find Full Text PDF