Publications by authors named "Shigeko Morimoto"

The reason why RBE for cell killing fell to less than unity (1.0) with very high-LET heavy-ions ((40)Ar: 1,640 keV/microm; (56)Fe: 780, 1,200, 2,000 keV/microm) was explored by evaluating the fraction of non-hit cell (time-lapse observation) and cells undergoing interphase death (calculation based on our previous data). CHO cells were exposed to 4 Gy (30% survival dose) of Ar (1,640 keV/microm) or Fe-ions (2,000 keV/microm).

View Article and Find Full Text PDF

Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation.

View Article and Find Full Text PDF

A molecular analysis of the loss of heterozygosity (LOH) events in human cells after low-dose heavy-ion exposure could contribute to the sensitive detection of the genetic influences caused by high-LET radiation. We exposed human lymphoblastoid TK6-20C cells to 10 cGy of an accelerated C-ion (22 keV/microm) beam, and observed a 3.1-fold increase in the mutation frequency (MF) at the heterozygous thymidine kinase (TK) locus over the background level.

View Article and Find Full Text PDF

To elucidate the genetic influence of low-dose ionizing radiation at the chromosome level, we exposed human lymphoblastoid TK6-20C cells to 10 cGy of X rays. The TK mutation frequency was 5.7 +/- 1.

View Article and Find Full Text PDF