Publications by authors named "Shigeki Tsutsui"

Multiple sclerosis (MS) is a frequently disabling neurological disorder characterized by symptoms, clinical signs and imaging abnormalities that typically fluctuate over time, affecting any level of the CNS. Prominent lymphocytic inflammation, many genetic susceptibility variants involving immune pathways, as well as potent responses of the neuroinflammatory component to immunomodulating drugs, have led to the natural conclusion that this disease is driven by a primary autoimmune process. In this Hypothesis and Theory article, we discuss emerging data that cast doubt on this assumption.

View Article and Find Full Text PDF

As in neurons, CNS myelin expresses N-Methyl-D-Aspartate Receptors (NMDARs) that subserve physiological roles, but have the potential to induce injury to this vital element. Using 2-photon imaging of myelinic Ca in live ex vivo mouse optic nerves, we show that Cu ions potently modulate Ca levels in an NMDAR-dependent manner. Chelating Cu in the perfusate induced a substantial increase in Ca levels, and also caused significant axo-myelinic injury.

View Article and Find Full Text PDF

Background: Toxic amyloid-β (Aβ) peptides aggregate into higher molecular weight assemblies and accumulate not only in the extracellular space, but also in the walls of blood vessels in the brain, increasing their permeability, and promoting immune cell migration and activation. Given the prominent role of the immune system, phagocytic blood cells may contact pathological brain materials.

Objective: To develop a novel method for early Alzheimer's disease (AD) detection, we used blood leukocytes, that could act as "sentinels" after trafficking through the brain microvasculature, to detect pathological amyloid by labelling with a conformationally-sensitive fluorescent amyloid probe and imaging with confocal spectral microscopy.

View Article and Find Full Text PDF

Emerging data point to important contributions of both autoimmune inflammation and progressive degeneration in the pathophysiology of multiple sclerosis (MS). Unfortunately, after decades of intensive investigation, the fundamental cause remains unknown. A large body of research on the immunobiology of MS has resulted in a variety of anti-inflammatory therapies that are highly effective at reducing brain inflammation and clinical/radiological relapses.

View Article and Find Full Text PDF
Article Synopsis
  • Subtle biochemical changes in brain myelin can provoke immune responses resembling multiple sclerosis (MS) lesions.
  • A specific experiment using cuprizone treatment showed that the level of myelin damage influenced the intensity of immune reactions, where both minimal and excessive damage did not lead to significant issues.
  • The use of an enzyme inhibitor during myelin alteration lessened pathology, suggesting that targeting myelin could be a vital approach for early treatment and prevention of MS.
View Article and Find Full Text PDF

As an extension of the brain, the spinal cord has unique properties which could allow us to gain a better understanding of CNS pathology. The brain and cord share the same cellular components, yet the latter is simpler in cytoarchitecture and connectivity. In Alzheimer's research, virtually all focus is on brain pathology, however it has been shown that transgenic Alzheimer's mouse models accumulate beta amyloid plaques in spinal cord, suggesting that the cord possesses the same molecular machinery and conditions for plaque formation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial disease that is characterized by the formation of intracellular neurofibrillary tangles and extracellular amyloid-β (Aβ) plaque deposits. Increased oxidative stress, metal ion dysregulation, and the formation of toxic Aβ peptide oligomers are all considered to contribute to the etiology of AD. In this work we have developed a series of ligands that are multi-target-directed in order to address several disease properties.

View Article and Find Full Text PDF

Cellular injury and death are ubiquitous features of disease, yet tools to detect them are limited and insensitive to subtle pathological changes. Acridine orange (AO), a nucleic acid dye with unique spectral properties, enables real-time measurement of RNA and DNA as proxies for cell viability during exposure to various noxious stimuli. This tool illuminates spectral signatures unique to various modes of cell death, such as cells undergoing apoptosis versus necrosis/necroptosis.

View Article and Find Full Text PDF

Dendrimers and dendriplexes, highly branched synthetic macromolecules, have gained popularity as new tools for a variety of nanomedicine strategies due to their unique structure and properties. We show that fluorescent phosphorus dendrimers are well retained by bone marrow-derived macrophages and exhibit robust spectral shift in its emission in response to polarization conditions. Fluorescence properties of this marker can also assist in identifying macrophage presence and phenotype status at different time points after spinal cord injury.

View Article and Find Full Text PDF

Although it is well established that misfolding of the cellular prion protein (PrP(C)) into the β-sheet-rich, aggregated scrapie conformation (PrP(Sc)) causes a variety of transmissible spongiform encephalopathies (TSEs), the physiological roles of PrP(C) are still incompletely understood. There is accumulating evidence describing the roles of PrP(C) in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrP(C) that involves formation of a physical protein complex between these proteins.

View Article and Find Full Text PDF

CNS white matter, the collection of axons and supporting glia of the mammalian CNS, makes up close to 50% of the human brain by volume. Interruption of vital interconnects within this tissue, even over a short segment, often leads to serious morbidity in a broad range of neurological disorders. Axons, glia and myelin express a complex array of conventional voltage gated ion channels, intracellular Ca(2+) release channels, neurotransmitter uptake and release mechanisms, together with matching transmitter receptors.

View Article and Find Full Text PDF

N-methyl-d-aspartate receptors (NMDARs) mediate critical CNS functions, whereas excessive activity contributes to neuronal damage. At physiological glycine concentrations, NMDAR currents recorded from cultured rodent hippocampal neurons exhibited strong desensitization in the continued presence of NMDA, thus protecting neurons from calcium overload. Reducing copper availability by specific chelators (bathocuproine disulfonate, cuprizone) induced nondesensitizing NMDAR currents even at physiologically low glycine concentrations.

View Article and Find Full Text PDF

The central role of the prion protein (PrP) in a family of fatal neurodegenerate diseases has garnered considerable research interest over the past two decades. Moreover, the role of PrP in neuronal development, as well as its apparent role in metal homeostasis, is increasingly of interest. The host-encoded form of the prion protein (PrP(C)) binds multiple copper atoms via its N-terminal domain and can influence brain copper and iron levels.

View Article and Find Full Text PDF

A single postnatal exposure to the bacterial endotoxin, lipopolysaccharide (LPS), reduces the neuroimmune response to a subsequent LPS exposure in the adult rat. The attenuated fever and proinflammatory response is caused by a paradoxical, amplified, early corticosterone response to LPS. Here we identify the mechanisms underlying the heightened corticosterone response to LPS in adults after early life exposure to LPS.

View Article and Find Full Text PDF

The rising incidence of autoimmune diseases such as multiple sclerosis (MS) in developed countries might be due to a more hygienic environment, particularly during early life. To investigate this concept, we developed a model of neonatal exposure to a common pathogen-associated molecular pattern, LPS, and determined its impact on experimental autoimmune encephalomyelitis (EAE). Mice exposed to LPS at 2 wk of age showed a delayed onset and diminished severity of myelin oligodendrocyte glycoprotein (MOG)-induced EAE, induced at 12 wk, compared with vehicle-exposed animals.

View Article and Find Full Text PDF

Although the physiological roles of the cellular prion protein (PrP C) remain to be fully elucidated, PrP C has been proposed to represent a potential regulator of cellular immunity. To test this hypothesis, we evaluated the consequences of PrP C deficiency on the course of experimental autoimmune encephalomyelitis induced by immunization with myelin oligodendrocyte glycoprotein peptide. Consistent with augmented proliferative responses and increased cytokine gene expression by myelin oligodendrocyte glycoprotein-primed Prnp-/- T cells, PrP C-deficient mice demonstrated more aggressive disease onset and a lack of clinical improvement during the chronic phase of experimental autoimmune encephalomyelitis.

View Article and Find Full Text PDF

It is well established that misfolded forms of cellular prion protein (PrP [PrPC]) are crucial in the genesis and progression of transmissible spongiform encephalitis, whereas the function of native PrPC remains incompletely understood. To determine the physiological role of PrPC, we examine the neurophysiological properties of hippocampal neurons isolated from PrP-null mice. We show that PrP-null mouse neurons exhibit enhanced and drastically prolonged N-methyl-D-aspartate (NMDA)-evoked currents as a result of a functional upregulation of NMDA receptors (NMDARs) containing NR2D subunits.

View Article and Find Full Text PDF

It is well established that misfolded forms of cellular prion protein (PrP [PrP(C)]) are crucial in the genesis and progression of transmissible spongiform encephalitis, whereas the function of native PrP(C) remains incompletely understood. To determine the physiological role of PrP(C), we examine the neurophysiological properties of hippocampal neurons isolated from PrP-null mice. We show that PrP-null mouse neurons exhibit enhanced and drastically prolonged N-methyl-d-aspartate (NMDA)-evoked currents as a result of a functional upregulation of NMDA receptors (NMDARs) containing NR2D subunits.

View Article and Find Full Text PDF

The Pten tumor suppressor gene is critical for normal intrathymic development of T cells; however, its role in mature antigen-activated T cells is less well defined. A genetically crossed mouse line, Pten(fl/fl) GBC, in which Pten gene deletions could be primarily confined to antigen-activated CD8+ T cells, enabled us to evaluate the consequences of Pten loss on the course of experimental autoimmune encephalomyelitis. Compared with Pten(fl/fl) controls, myelin oligodendrocyte glycoprotein (MOG) peptide-immunized Pten(fl/fl) GBC mice developed more severe and protracted disease.

View Article and Find Full Text PDF

Desensitization of seven transmembrane receptors (7TMRs), which are modulated by the beta-arrestins, leads to altered G protein activation. The A1 adenosine receptor (A1AR) is an antiinflammatory 7TMR exhibiting reduced expression and activity in both multiple sclerosis (MS) and the murine MS model, experimental autoimmune encephalomyelitis (EAE) in monocytoid cells. Herein, we report that beta-arrestin-1 expression was increased in brains of MS patients relative to non-MS brains, whereas A1AR expression was concomitantly reduced.

View Article and Find Full Text PDF

The proteinase-activated receptors (PARs) are widely recognized for their modulatory properties of inflammation and neurodegeneration. We investigated the role of PAR2 in the pathogenesis of multiple sclerosis (MS) in humans and experimental autoimmune encephalomyelitis (EAE) in mice. PAR2 expression was increased on astrocytes and infiltrating macrophages in human MS and murine EAE central nervous system (CNS) white matter (P < 0.

View Article and Find Full Text PDF

Distal sensory polyneuropathy (DSP) is currently the most common neurological complication of HIV infection in the developed world and is characterized by sensory neuronal injury accompanied by inflammation, which is clinically manifested as disabling pain and gait instability. We previously showed that feline immunodeficiency virus (FIV) infection of cats caused DSP together with immunosuppression in cats, similar to that observed in HIV-infected humans. In this study, we investigated the pathogenic mechanisms underlying the development of FIV-induced DSP using feline dorsal root ganglia (DRG) cultures, consisting of neurons, Schwann cells, and macrophages.

View Article and Find Full Text PDF

The tyrosine kinase receptor RON and its ligand, macrophage stimulating protein (MSP), exert inhibitory effects on systemic innate immunity, but their CNS expression and impact on human neuroinflammatory diseases are unknown were RON and MSP present in human brain perivascular macrophages and microglia, but RON mRNA and protein abundance in the CNS were diminished in both MS patients and the MS animal model, experimental autoimmune encephalomyelitis (EAE). Treatment of differentiated human monocytoid cells with MSP resulted in significant reduction of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and MMP-9 mRNA levels, whereas minimal effects were observed in human astrocytes. After induction of EAE, RON knockout and heterozygote animals exhibited significantly increased CNS proinflammatory gene (TNF-alpha, MMP-12) expression compared with wild-type littermate controls, although IL-4 levels were suppressed in both RON-deficient groups.

View Article and Find Full Text PDF