Publications by authors named "Shigeki Omachi"

Microglia are the resident immune cells of the brain, and play essential roles in neuronal development, homeostatic function, and neurodegenerative disease. Human microglia are relatively different from mouse microglia. However, most research on human microglia is performed in vitro, which does not accurately represent microglia characteristics under in vivo conditions.

View Article and Find Full Text PDF

Microglia exhibit various activation phenotypes in the spinal cord after peripheral nerve injury, and promote neuropathic pain. Ibudilast is a phosphodiesterase inhibitor with anti-inflammatory activity, but its effect on activated microglia in chronic neuropathic pain is poorly understood. We investigated whether ibudilast was effective on established allodynia associated with activated microglial phenotypes in two rat models of peripheral and central neuropathic pain.

View Article and Find Full Text PDF

Background: Translocator protein (TSPO) imaging can be used to detect neuroinflammation (including microglial activation) after acute cerebral infarction. However, longitudinal changes of TSPO binding after mild ischemia that induces selective neuronal loss (SNL) without acute infarction are not well understood. Here, we performed TSPO imaging with [F]DPA-714 to determine the time course of neuroinflammation and SNL after mild focal ischemia.

View Article and Find Full Text PDF

We investigated the mechanisms underlying the suppression of the rewarding effects of opioids using the femur bone cancer (FBC) mouse model. The rewarding and antinociceptive effects of subcutaneously administered morphine and oxycodone in the FBC model mice were assessed using the conditioned place preference test and the von-Frey test. In FBC mice, antinociceptive doses of morphine (30 mg/kg) and oxycodone (5 mg/kg) did not produce the rewarding effects but excessive doses of morphine (300 mg/kg) and oxycodone (100 mg/kg) did.

View Article and Find Full Text PDF

The role of glial activation has been implicated in the development and persistence of neuropathic pain after nerve injury by recent studies. PK11195 binding to the translocator protein 18kDa (TSPO) has been shown to be enhanced in activated microglia. This study was designed to assess PK11195 imaging in spinal microglia during activation after nerve injury.

View Article and Find Full Text PDF

To search for a gene(s) conferring susceptibility to diabetic nephropathy (DN), we genotyped over 80,000 gene-based single nucleotide polymorphisms (SNPs) in Japanese patients and identified that the engulfment and cell motility 1 gene (ELMO1) was a likely candidate for conferring susceptibility to DN, in view of the significant association of an SNP in this gene with the disease (intron 18+9170, GG vs. GA+AA, chi(2) = 19.9, P = 0.

View Article and Find Full Text PDF

Parkinson disease (PD) is a neurodegenerative disorder characterized by loss of midbrain dopaminergic (DA) neurons. ES cells are currently the most promising donor cell source for cell-replacement therapy in PD. We previously described a strong neuralizing activity present on the surface of stromal cells, named stromal cell-derived inducing activity (SDIA).

View Article and Find Full Text PDF